INSTITUTE:

Vision:

To emerge as a comprehensive Institute that provides quality technical education and research thereby building up a precious human resource for the industry and society.

Mission:

- To provide a learner-centered environment that challenges individuals to actively participate in the education process.
- To empower the faculty to excel in teaching while engaging in research, creativity and public service.
- To develop effective learning skills enabling students pick up critical thinking thus crafting them professionally fit and ethically strong.
- To reach out industries, schools and public agencies to partner and share human and academic resources.

Vision and Mission of the Department

Vision:

To impart quality education and research with professional values & ethics to cater the industrial and societal needs.

Mission:

- > To enhance student's skills by implementing modern curriculum through collaborative industry institute interaction.
- > To provide with modern tools to enhance innovative research.
- To create human resources in electrical engineering to contribute to the nations development and improve the quality of life.
- > Imbibe values and ethics for a holistic engineering professional practice.

PROGRAM EDUCATIONAL OBJECTIVES

PEO1: To inculcate basic knowledge in Humanities and Sciences, Fundamentals of Computer Programming besides essential knowledge of electrical and electronics engineering.

PEO2: To apply the principles, concepts and skills of Electrical and Electronics Engineering for research and development.

PEO3: To imbibe professional values, ethics, leadership, teamwork through co-curricular and extracurricular activities for personality development and for effective engineering practice.

PEO4: Engage in continuing professional growth through higher education or professional activity.

PROGRAM OUTCOMES

Engineering Graduates will be able to:

PO1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

REGULATIONS FOR

FOUR YEAR BACHELOR OF TECHNOLOGY (B.Tech.) DEGREE PROGRAM

(With effect from the batches admitted in the academic year 2013 - 14)

&

B.Tech. (Lateral Entry Scheme) (For the batches admitted from the academic year 2014-15)

1. Minimum Qualifications for Admission :

A candidate seeking admission into first year B.Tech. Degree program should have passed the Intermediate Examination of the Board of Intermediate Education, Andhra Pradesh with Mathematics, Physics and Chemistry as optional subjects or any equivalent examination recognized by JNTUA, Anantapur).

A candidate seeking admission into second year of the four year B.Tech Degree program in engineering should have passed Diploma in Engineering conducted by the Board of Technical Education, Andhra Pradesh (or equivalent examination recognized by JNTUA, Anantapur).

Any other admission, authorized by the University and the Government of Andhra Pradesh, will be as per the eligibility criterion and procedure laid down by the said authorities.

2. Branches of Study :

- 2.1 The branches of study in B.Tech. Degree Program offered by the Institute are
 - (a) Civil Engineering
 - (b) Electrical & Electronics Engineering
 - (c) Electronics & Communication Engineering
 - (d) Mechanical Engineering
 - (e) Computer Science & Engineering
- **2.2** A student is required to choose the course of study (branch) at the time of admission. No change of branch shall be permitted after the closure of admissions by the competent authority, nominated by the Government of Andhra Pradesh.
- **2.3** The duration of the program is of four academic years. The first year of study will be of annual pattern. Semester pattern shall be followed for the Second, Third and Fourth years of study with two semesters in each academic year.

3.0 Instruction Days:

First year of B.Tech. program consists of a minimum of 180 days, including the days allotted for tests.

Each semester shall consist of a minimum of 90 days, including the days allotted for tests.

4.0 Credits:

Credit defines the quantum of contents/syllabus prescribed for a course and the number of instruction hours per week. The norms for assigning credits to a course for

duration of one semester shall be as follows :

I One credit for every one hour lecture per week/semester.

II Two credits for every three hours of drawing or practical per week/semester. Similarly,

- I Two credits for every one hour lecture per week/year.
- II Four credits for every three hours of drawing or practical work per week/year.

5.0 Evaluation:

5.1 The performance of the students in first year /each semester shall be evaluated subject-wise. The distribution of marks between Sessional marks and end examination is as follows :

5.2 Sessional Marks

- **5.2.1** For the award of sessional marks in I year in theory courses, each test for 40 marks shall be conducted. Each test shall be of two hours duration and three tests will be evenly distributed during the year. The final sessional marks shall be taken giving a weightage of 0.40 each for the better two tests and 0.20 for the other mid examination marks.
- **5.2.2** For award of sessional marks for theory courses in each semester two tests each for 40 marks shall be conducted. Each test shall be of two hours duration and the test shall be evenly distributed during the semester. The final sessional marks shall be taken giving a weightage of 0.80 for the better of the two tests and 0.20 for the other mid examination marks.
- **5.2.3** In case of practical subjects the sessional marks will be awarded based on day-to-day class work and one test at the end of 1 year / semester.
- **5.2.4** For the subject having design and / or drawing, such as Engineering Drawing, Machine Drawing and estimation etc., the distribution shall be 40 marks for internal evaluation and 60 Marks for end examination. The Internal evaluation for sessionals will be 20 marks for day- to-day work in the class that shall be evaluated by the concerned subject teacher based on the reports/submissions prepared in the class. And there shall be two midterm exams in a Semester for a duration of 2 hrs each, evenly distributed over the syllabi, for 40 marks each and the sessional marks shall be taken as enunciated in clause 5.2.2. However, in the I year class there shall be three midterm exams and the midterm examination component of the sessional marks shall be taken as enunciated in clause 5.2.1. The sum of day-to-day evaluation for 20 marks and the half of the midterm examinations marks will be the final sessional marks for the subject.
- **5.2.5** The Department concerned shall constitute a three-member committee, consisting of the Head of the Department concerned, one senior faculty member and the concerned guide to assess uniformly the performance of the students by way of seminars on the project work turned out by the students. The sessional marks shall be awarded by the concerned guide for 50% and the committee for the balance 50% based on the work turned out and submitted in the form of a project report.

6.0 End Examinations

6.1 For each of the theory, practical and design/drawing courses, there shall be an end Examination of three hours duration at the end of first year/ each semester, except where stated otherwise explicitly in the detailed scheme of instruction.

6.2 Recounting

Students shall be permitted to request only for recounting of the end theory examination answer scripts within a stipulated period after payment of the requisite fee. After recounting, records are updated with changes if any, and the student shall be issued a revised memorandum of marks. If there are no changes, the student shall be intimated the same.

In the recounting process, the valued answer script will be scrutinized jointly by the HOD concerned and a faculty nominated by the Director/Principal.

6.3 Instant examinations

Instant examinations may be conducted in the theory subjects of the final year second semester only for the benefit of those outgoing students who failed in or who are absent for only one theory subject of final year second semester and who do not have any other back logs. The instant exams will be conducted normally within one month of the announcement of the final semester results.

6.4 Conduct of Examinations

Question paper setting shall be undertaken by the Institute, choosing external examiners from the panels recommended by the respective Board of Studies. Evaluation of answer scripts shall also be undertaken by the Institute by choosing external/internal examiners from the panels recommended by the respective Board of Studies.

For each practical examination, the end examination will be conducted jointly by the laboratory teacher and another examiner nominated by the Director/Principal.

Project Viva-voce examination shall be conducted by two internal examiners and one external examiner. The appointment of internal and external examiners for the conduct Viva-voce examinations shall be made by the panels recommended by the respective Board of Studies. Panel of Examiners must consist of one internal and six external examiners.

7.0 Grading, Grade Point Average (GPA), Cumulative Grade Point Average (CGPA) and Grade sheet

After each subject is evaluated for 100 marks, the marks obtained in each subject will be converted to a corresponding letter grade as given below depending on the range in which the marks obtained by the student falls.

Range in which the marks in the subject fall	Grade	Grade points assigned	Performance
≥ 95	A ⁺⁺	10	Out Standing
85 – 94	A ⁺	9.0	Excellent
75 – 84	А	8.0	Very Good
65 – 74	B ⁺	7.0	Good
55 - 64	В	6.0	Fair
45 – 54	С	5.0	Average
0-44	D	4.0	Satisfactory
< 40	F	0	Fail

7.1 Grade Point Average (GPA)

The grade point average for each semester/year is calculated as follows:

$$GPA = \frac{\sum_{i=1}^{n} (C_i) (GP_i)}{TC}$$

where *n* = number of subjects in the year/semester *for each subject, i*

C_i = credits for the subject

*GP*_i = the grade point for the subject

TC = Total number of credits in the year / semester

7.2 Cumulative Grade Point Average (CGPA)

The CGPA is computed for every student at the end of each semester. The CGPA would give the cumulative performance of a student from the first year up to the end of the semester to which it refers and is calculated as follows:

$$CGPA = \frac{\sum_{1}^{m} (GPA_j)(TC_j)}{\sum_{1}^{m} TC_j}$$

where *m* = number of year/semesters under consideration *for each year / semester, j*

TC_j = Total number of credits for a particular year/semester

GPA_j = the grade point average of that year/semester

Both GPA and CGPA will be rounded off to the second place after decimal and recorded as such.

While computing GPA/CGPA, the course in which the candidate is awarded zero grade points will also be included.

7.3 Grade Sheet

The grade sheet (memorandum) will be issued to each student indicating his performance in all the courses taken in that semester in the form of grades, also indicating the GPA of that semester and CGPA up to that semester.

7.4 With holding of results

If the student has not paid the dues, if any, to the Institute or if any case of indiscipline is pending against him/her, the result of the student will be withheld and he/she will not be allowed into the next semester and his/her degree will be withheld in such cases.

8.0 Attendance Requirements

- **8.1** A student shall be eligible to appear for end Examinations if he acquires a minimum of 75% of attendance in aggregate of all subjects in a semester / I year
- **8.2** However, a student has to put in a minimum of 50% attendance in each course/subject, in addition to the condition laid down in clause 8.1.
- **8.3** Condonation of shortage of attendance may be recommended provided a student puts in at least 65% attendance in all the subjects put together as calculated in clause 8.1 above, along with a minimum of 50% attendance in each course as stated in clause 8.2. For condonation of shortage of attendance, the student shall pay the prescribed fee and submit an application in writing clearly stating the reason for shortage of attendance along with necessary documentary evidence. The final decision for condonation of attendance shall be taken by the college academic committee considering the merits of the case.

8.4 Shortage of attendance below 65% in aggregate shall in <u>NO</u> case be condoned.

- **8.5** Students whose shortage of attendance is not condoned in any semester/ I year are not eligible to take their end examination of that class and their registration for end examinations shall stand cancelled.
- **8.6** A student, who could not satisfy these requirements of attendance, as given in clauses 8.1 through 8.5 in first year or in any semester, shall have to repeat the first year or the semester as the case may be.
- **8.7** A student shall not be permitted to study first year or any semester for more than three times during the course of his / her study.

Further, a student is required to complete the course of study of B.Tech. program, satisfying all the attendance requirements in all the four years of the program within a period of eight academic years from the year of admission, failing which he/she shall forfeit his/her admission.

8.8 A student, who has satisfied the minimum attendance requirements in the first year or in any semester may repeat the first year or that semester with the permission of the Principal/Director and cancelling the previous record of attendance and sessional marks of the first year or that semester. [However, the facility may be availed of by the student not more than twice during the entire course of his/her studies and the entire course of study shall be within eight academic years, as stipulated in clause 8.7].

9.0 Minimum Academic Requirements

- **9.1** A candidate shall be declared to have passed in each theory, design/drawing, practical and project work, if he / she secures not less than 35% marks in the end examination and the sum total marks of 40% in the end examination plus the sessional marks secured by the student in that theory/design/drawing/practical.
- **9.2** A student eligible for the end examination in a subject, but absent at it or has failed in the end Examination may appear for that subject at the next examination as and when it is held.

10.0 Conditions for Promotion

- **10.1** A student shall be eligible for promotion to the I semester of II year B.Tech. if he/she satisfies the minimum attendance requirements for I B.Tech. as stipulated in clause 8.
- **10.2** A student shall be eligible for promotion to the next semester if he/she satisfies the minimum attendance requirement in the immediately preceding semester as given in clause 8.

11.0 Award of B.Tech. Degree

The degree of B.Tech. shall be conferred on a candidate, who has satisfied the following:

- (i) The candidate must have after admission to the regular B.Tech. programme of the Institute, pursued a course of study for not less than four academic years.
- (ii) The candidate must have satisfied the minimum academic requirements as in clause 9 in all the courses prescribed for the four-year programme.

12.0 Award of Class

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B.Tech. Degree he shall be placed in one of the following four classes :

Class Awarded	CGPA
First Class with Distinction	≥ 7.5
First Class	≥ 6.5 and < 7.5
Second Class	≥ 5.5 and < 6.5
Pass Class	< 5.5

13.0 Award of Rank

- **13.1** Ranks shall be awarded in each branch of specialization for the top three students.
- **13.2** Only such candidate who completes the B.Tech. program within four academic years from the year of their admission are eligible for the award of rank.
- **13.3** For the purpose of awarding rank in each branch, total marks, i.e. end examination and sessional marks put together of all the semesters of II, III and IV B.Tech. Secured in the first attempt only shall be taken into account. Candidates who have failed in

any course in I year/semester are not eligible for the award of Rank.

14.0 Transitory Regulations

- **14.1** Candidates who studied the four year B.Tech. Degree course under Old Regulations but who could not satisfy the minimum attendance requirements in any year may join the first year/appropriate semester in the New Regulations applicable for the batch for the remaining part of the course and be governed by the Regulations of that batch from then on. Any candidate, admitted under Old Regulations, who wished to join in any particular year in the New Regulations under any other circumstances shall also be governed by the New Regulations from that year onwards.
- **14.2** Candidates who satisfy the minimum attendance requirements in any year under Old Regulations but who are yet to pass some subjects of that year even after three chances shall appear for the equivalent subjects specified by the Board of Studies of the concerned branch.

15.0 Amendment of Regulations

N.B.K.R. Institute of Science & Technology reserves the right to amend these regulations at any time in future without any notice. Further, the interpretation of any of the clauses of these regulations entirely rests with the College Academic Committee.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR:NELLORE)

SPSR NELLORE DIST

I B.TECH(yearly pattern) Scheme of Instruction and Evaluation (Common to all branches) (With effect from the Academic Year 2013-2014)

Course	Course Title	In	Instruction			Evaluation						Maximum					
Code		Hours/Week		Hours/Week		Credits		Sessio	onal	Sessio	onal	Sessio	onal	Total Sessional	End Ser	nester	Total
Code					Test	:-I	Test	-II	Test-	III	Marks (Max. 40)	Examin	nation	Marks			
		L	Т	D/P		Duration	Max.	Duration	Max.	Duration	Max.		Duration	Max.	100		
			_			In Hours	Marks	In Hours	Marks	In Hours	Marks		In Hours	Marks			
13SH1001	English	2	-	-	4	2	40	2	40	2	40		3	60	100		
13SH1002	Engineering Mathematics-I	3	1	-	8	2	40	2	40	2	40		3	60	100		
13SH1003	Engineering Mathematics-II	3	1	-	8	2	40	2	40	2	40	0.4*first Best +	3	60	100		
13SH1004	Engineering Physics	2	-	-	4	2	40	2	40	2	40	0.4*second best	3	60	100		
13SH1005	Engineering Chemistry	2	-	-	4	2	40	2	40	2	40	0.2*Least	3	60	100		
13CS1001	Computer Programming & Data Structures	3	1	-	8	2	40	2	40	2	40		3	60	100		
13EE1001	Basic Electrical Sciences	3	1	-	6	2	40	2	40	2	40		3	60	100		
13SH10P1	English Language Laboratory			3	4	-	-	-	-	-	-	Day to Day Evaluation and a	3	60	100		
13ME101P	Workshop			3	4	-	-	-	-	-	-	test	3	60	100		
13CS10P1	Programming Laboratory			3	4	-	-	-	-	-	-	(40 Marks)	3	60	100		
	TOTAL	18	4	9	54									600	1000		

Course Category:	Hu	manities	Credits:	4		
Course Type:		eory	Lecture-Tutorial-Practical:	2-0-0		
J		Comprehending	Sessional Evaluation:	40		
		the basic level	Univ.Exam Evaluation:	60		
		of	Total Marks:	100		
		comprehensions				
	• Intermediate					
		level of error				
Pre-requisite:	:	analysis				
	•	Ability to use				
		appropriate				
		language in				
		informal				
	:	situations				
	1.		r basic communication			
	skills in English					
~	 To achieve specific linguistic and communicative competence To acquire relevant skills and function efficiently in a realistic 					
Course						
Objectives:						
	4	working context				
	4. To inculcate the habit of reading					
	CO1 Correct the error of the sentence; improve language proficiency and face compatitive events: CATE CRE TOFEL CMAT atc					
Course	face competitive exams; GATE, GRE, TOEFL, GMAT etcCO2Comprehend the advanced level of reading comprehensions					
Outcomes:		CO3 Write clear and coherent passages for social and professional contexts				
Outcomes.						
	CO4		s, business letters			
	CO5 Acquire considerable flair in using broad range of vocabulary.					
			TINIT I			
	(Uum	ann' fuam (Haine	UNIT-I Fuglish' Piegraphy (Homi Johangin P	habba) from		
			g English' Biography –(Homi Jehangir B	navna) fruifi		
	"New Horizons" P. Pooding Strategies, Skimming and Scapping, G. Ports of Speech Noun					
	R- Reading Strategies- Skimming and Scanning. G- Parts of Speech- Noun- number, pronoun-personal pronoun, -Subject verb& Pronoun agreement.					
	numbe	r, pronoun person		ement.		
			UNIT-II			
	'Inspiration' from "Using English" 'Biography-(My Struggle for a Education)' form "New Horizons" R- Note making strategies W- Paragraph types- topic sentences, unity, coherence, length, linking devices G- Articles					
			esent tense, Past tense and Future tense			

UNIT-III "Sustainable Development' from 'Using English' Short Story- (The Happy Prince) from "New Horizons" G .Non-finite verbs, Auxiliary verbs and

UNIT-IV W- Writing Strategies- Sentence structures-Letter Writing-Dialogue Writing-

G- Transformation of Sentences (Direct and Indirect/ Active and Passive)

question tags V- Word formation and One-Word Substitutes

V- Affixes-prefix and suffix, root words, derivatives

Public Speaking

Course Content:

<u> 13SH1001 – ENGLISH</u>

	UNIT-V				
	W- Technical Report writing-strategies, formats-types-technical report writing				
	G- Conditional clauses, Transformation of Sentences (Degrees of				
	Comparison/Connectives)				
	V- Collocations and Technical Vocabulary and using words appropriately-				
	Synonyms-				
	antonyms, homonyms, homophones, homographs, words often confused.				
	Text Books:				
	1. Using English published by Orient Black Swan				
	2.New Horizons published by Pearson				
Text Books &	Reference Books:				
Reference Books:	1. Raymond Murphy's English Grammar with CD, Murphy, Cambridge				
	University Press, 2012.				
	2. English Conversation Practice- Grant Taylor, Tata McGraw Hill, 2009.				
	3. Communication skills, Sanjay Kumar & Pushpalatha Oxford University Press, 2012.				
	4. Techniques of Teaching English: A.L. Kohli				
	5. A Textbook of English Phonetics: For Indian Students: T				
	Balasubramanian., MacMillan India Limited				
	······································				
	http://nptel.ac.in/courses				
E-Resources:	http://iete-elan.ac.in				
	http://freevideolectures.com/university/iitm				

Course Category:	Mathematics	Credits: 8			
Course Type:	Theory	Lecture-Tutorial-Practical: 3-1-0			
Pre-requisite:	 Trigonometric , Differentiation and integration Formulas Equation Simplifications 	Sessional Evaluation:40Univ.Exam Evaluation:60Total Marks:100			
Course Objectives:	 of the students in the To develop the skills Integral calculus, Ve 	e mathematical knowledge and computational skills areas of applied mathematics. s of the students in the areas of Differential calculus ctor calculus, Curvature and Matrices. -requisite mathematics course for post graduate studies and research.			
Course Outcomes:	 CO1 Understand the cond system of equation Hamilton theorem, d the nature of quadrati CO2 Understanding effec Minima of a func multipliers. CO3 Understanding effec involutes and evolu- engineer, as elegant CO4 Demonstrate knowl 	epts of rank of the matrices, linear and non-linear s, eigen-values and eigen-vectors, apply Caley- agonalizable of symmetric matrices and demonstrate			
	also understand effectively areas and volumes. CO5 Apply Green's theorem, Gauss' theorem and Stokes' theorem. UNIT- I				
Course Content:					

<u>13SH1002 – ENGINEERING MATHEMATICS-I</u>

Text Books & Reference Books:	 Text Books: 1. Higher Engineering Mathematics – B S Grewal 2. Engineering Mathematics- B V Ramana 3. Elementary Engineering Mathematics – B S Grewal Reference Books: 1. Higher Engineering Mathematics- H K Das et al 2. Advanced Engineering Mathematics- N P Bali & M Goya 3. Engineering Mathematics-I S. Chand & Co.
E-Resources:	http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm

Course Category:	Ma	thematics	Credits:	8	
Course Type:		eory	Lecture-Tutorial-Practical:	3-1-0	
· · ·		• Trigonometric ,	Sessional Evaluation:	40	
		Differentiation	Univ.Exam Evaluation:	60	
		and integration	Total Marks:	100	
		Formulas			
Pre-requisite:		• Equation			
-		Simplifications			
		• Roots finding			
		and partial			
		fractions			
	I				
	•	To develop the b	asic mathematical knowledge and compu	tational skills	
		•	the areas of applied mathematics.		
Course	•		skills of the students in the areas of	² Differential	
Objectives:			ce Transform, Fourier series and Fourier		
	•	· ·	pre-requisite mathematics course for p		
			red studies and research.	C I	
	CO1		able to understand the basic theories and	d methods of	
		differential equa	tions, and to apply the fundamental t	echniques of	
		differential equat	ions to perform analysis and computation	n of solutions	
		to various different	ntial equations.		
	CO2	Understanding et	ffectively the Laplace Transformations	of standard	
		functions and the			
	CO3 Understanding effectively the unit step function, Dirac's delta function,				
			rem and also the applications of Laplace	transforms to	
		differential equations.			
Course	CO4				
Outcomes:			s in engineering apart from its use in solv	ing boundary	
		value problems			
	CO5		rier transform and how to compute it		
			llso understand effectively the Fourier		
			nite and infinite Fourier transforms, Fou	irier sine and	
		cosine transforms			
	UNIT – I Ordinary Differential Equations: Linear Differential Equations of second and				
			ant coefficients- Method of variation of		
			inear equations with constant Coefficient		
	-		re's linear equation.	no- Caucity S	
	mear	equations Degena	UNIT – II		
	Lanla	ce Transformatio	on: Laplace Transformations of standar	rd functions-	
			Transformation- Transformation of der		
	·		al value theorems-Transforms of unit step		
	0		form of periodic functions.		
			UNIT – III		
Course Content:	Invers	e Laplace Trans	formation: Inverse transforms- Unit s	tep function-	
			onvolution theorem- Transforms of period	lic functions-	
	Applic	ation to solutions o	of Ordinary Differential Equations.		
			UNIT-1V		
			nation of Fourier coefficients- Fourier series		
			of intervals- Half Range Sine and Co	osine Series-	
	Comp	lex form of Fourier	series- Parseval's formula.		

<u>13SH1003 – ENGINEERING MATHEMATICS-II</u>

	UNIT-V						
	Fourier Transforms: Fourier Integral Theorem- Fourier Sine and Cosine						
	integral- Fourier integral in complex form - Finite and Infinite Fourier						
	Transforms- Fourier Sine and Cosine transforms properties- Inverse transforms.						
	Text Books						
	1.Higher Engineering Mathematics –B S Grewal						
Text Books &	2. Engineering Mathematics- B V Ramana						
Reference Books:	Reference Books						
	1. Higher Engineering Mathematics- H K Das et al						
	2. Advanced Engineering Mathematics- N P Bali and M Goyal.						
	http://nptel.ac.in/courses						
E-Resources:	http://iete-elan.ac.in						
	http://freevideolectures.com/university/iitm						

13SH1004-ENGINEERING PHYSICS

Course Category:	Sciences	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practical:	2-0-0
	Electromagnetism	Sessional Evaluation:	40
Pre-requisite:	and optics	Univ.Exam Evaluation:	60
	• Electromagnetic	Total Marks:	100
	field and Waves		

Course Objectives:	 Describe the concept of wave particle duality, Schrodinger wave equation and behaviour of electrons in metals. Explain and provide the knowledge about semiconductors and their use in electronic devices. Basic properties of magnetic Materials and the uses in Science & Technology. Describe the characteristics of lasers, their construction and applications in Science & Technology Describe basic idea about optical fibers, their construction and uses in communication field. 						
		blain the fundamental idea about semiconductor and their limited uses.					
	CO1	Understanding the wave particle behaviour of matter Schrodinger wave equation and electronic behaviour in metals.					
	CO2	Understand the structure of crystalline solids and their applications in					
Course		X-ray diffraction					
Outcomes:	CO3	Know the properties of semiconductor materials by projecting the view					
		of energy bands and know the concept of magnetization and applications of magnets in various disciplines.					
-	CO4	Understand the utilization of laser technology in various disciplines.					
	004	Basic Understands of Acoustics.					
	CO5	Understand the concept of optical fiber and its applications. Basic ideas					
		about super conductor and their uses in different fields.					
	UNIT – I						
	QUANTUM MECHANICS AND FREE ELECTRON THEORY :						
	Quantum Mechanics : Wave – Particle duality - de'Broglie hypothesis of Matter waves –Properties of matter waves Heisenberg's uncertainty principle and its applications–Schrodinger's time independent and time dependent wave equation –Significance of wave function –Particle in a one dimensional infinite						
	potential well.						
	Free Electron Theory : Classical free electron theory- Sources of electrical resistance –Equation for electrical conductivity – Quantum free electron theory- Fermi level and Fermi –Dirac distribution– Bloch theorem -Kronig – Penny model (qualitative) Origin of bands in solids –Classification of solids into conductors, semiconductors and insulators. UNIT – II						
	SEMI	CONDUCTORS AND MAGNETIC MATERIALS :					
		onductor Physics: Introduction – Intrinsic and extrinsic semiconductors					
Course Content:		concentration in intrinsic and extrinsic semi conductors - Drift and					
		on currents Einstein's equation–Continuity equation-Hall effect-direct lirect bandgap semiconductors.					
		etic Materials : Introduction and basic definitions –Origin of magnetic					
	Magnetic Materials : Introduction and basic definitions –Origin of magnetic moments –Bohr magneton –Classification of magnetic materials into dia, para, ferro, antiferro and ferri magnetic materials –Hysteresis –Soft and hard magnetic materials and applications						

	UNIT – III
	CRYSTALLOGRAPHY AND X-RAY DIFFRACTION AND DEFECTS
	IN CRYSTALS:
	Crystallography : Introduction–Space lattice–Unit cell–Lattice parameters– Bravias lattice crystal systems–Packing fractions of SC,BCC and FCC structures–Structures of NaCl and Diamond –Directions and planes in crystals– Miller indices –interplanar spacing in cubic crystals X-ray diffraction and defects in crystals : X-ray diffraction–Bragg's law– Laue and Powder methods –Defects in solids : point defects, line defects (qualitative)-screw and edge dislocation, burgers vector.
	UNIT – IV
	LASERS AND ULTRASONICS Lasers : Introduction – Characteristics of laser –Spontaneous and simulated emission of radiation-Einstein's coefficients–Population inversion–Excitation mechanisms and optical resonator–Ruby laser –He Ne laser–Semi conductor laser-Applications of lasers. Ultrasonics : Introduction Production of ultrasonics by piezoelectric method and magneto striction method – Detection and Applications of Ultrasonics .
	UNIT – V
	FIBER OPTICS AND SUPERCONDUCTIVITY
	Fiber Optics : Introduction-Construction and working principle of optical fiber–Numerical aperture and acceptance angle–Types of optical fibers–Attenuation and losses in fibers–Optical fiber communication system–Applications of optical fibers in communications, sensors and medicine Superconductivity : Introduction–Meissner effect–properties of superconductors–Type I and II superconductors–Flux quantization–London penetration depth–ac and dc Josephson effects–BCS theory (qualitative)–Applications of superconductors
	Text Books:
Text Books &	 1.P. K. Palaniswamy ,Scietech Publications 2.V.Rajendran and K.Tyagarajan,Tata Mc Graw Hill Publications – III Edition 3.R.K. Gaur and G.L.Guptha,Danapati Rai Publications Reference Books
Reference Books:	1.A.J.Dekkar, Mcmillan Publications –Latest Edition 2012
MULTINE DUURS.	2.M.Arumugam,Anuradha Publications II Edition
	3.Rama Chandra B & Subramanyam SV ,Hitech Publications
	4.S.O.Pillai ,New age International Publications
	5.Puri RK and Babbar VK ,Chand & Co Publications
	6.M.N.Aaravindhanulu and P.G.Krishi sagar ,Chand & CO Publications
	Revised Edition 2013
E D	http://nptel.ac.in/courses
E-Resources:	http://iete-elan.ac.in http://fragyidaglactures.com/university/jitm
L	http://freevideolectures.com/university/iitm

<u> 13SH1005 – ENGINEERING CHEMISTRY</u>

Course Category:	Sciences	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practical:	2-0-0
	fundamentals	Sessional Evaluation:	40
Pre-requisite:	chemistry	Univ.Exam Evaluation:	60
		Total Marks:	100

	• To strengthen the fundamentals of Chemistry and then build an				
	interface of theoretical concepts with their industrial/engineering				
Course	applications.				
Objectives:	• The extension of fundamentals Electrochemistry to energy storage				
	devices such as batteries and fuel cells is one such example.				
	• To design engineering materials and solve problems related to them.				
	• To understand the chemistry involved in the fuels.				
	• To understand water chemistry and polymers and their application				
	CO1 Understand the electrochemical sources of energy				
	CO2 Understand industrially based engineering materials				
	CO3 Differentiate between soft and hard water				
Course	CO4 Understand the disadvantages of using hard water and apply suitable				
Outcomes:	treatments				
	CO5 Understand the basics of polymers and their uses in engineering field				
	UNIT – I				
	ELECTRO CHEMISTRY				
	Single electrode potential – explanation and measurement-Reference				
	electrodes: Hydrogen gas electrode-calomel electrode-glass electrode				
	Electrochemical cells-Numerical calculations-Batteries: Rechargeable cells				
	and batteries (Lead-Acid storage cells, Al-Air Batteries)-Fuel Cells :				
	Hydrogen - Oxygen fuel cell				
	Corrosion: Definition-classification-Factors affecting the corrosion-				
	Prevention methods of corrosion – metallic coatings (Electroplating) and				
	cathodic protection.				
	UNIT-II				
	CHEMISTRY OF ENGINEERING MATERIALS				
	Electrical insulators: Definition-classification-Characteristics-Application of electrical insulating materials (solid, liquid and gaseous insulators)				
Course Content:	Refractories: Classification-properties and applications				
	Lubricants: Lubricant -Lubrication-Theory of lubrication-Properties and				
	applications of lubricants.				
	UNIT – III				
	FUEL TECHNOLOGY				
	Classifications of Fuels -Characteristics of fuels -Calorific value -				
	determination - Bomb calorimeter - Boys gas calorimeter - Theoretical				
	calculation of calorific value.				
	Solid fuels-coal-analysis of coal - metallurgical coke				
	Liquid fuels: Petroleum - refining of petroleum - Synthetic petrol - Fischer				
	Tropch's synthesis				
	Gaseous fuel – Flue gas analysis by Orsat's apparatus				
	UNIT – IV				
	WATER TREATMENT				
	Impurities in water-Hardness of water-disadvantages of water-Estimation of				
	hardness by EDTA method-Estimation of dissolved oxygen-alkalinity-chlorides				
	in water				
	Industrial use of water: For steam generation-troubles of boilers-scale and				

	sludge-priming and foaming-caustic embrittlement-boiler corrosion Softening methods of hard water: Lime-soda process- Zeolite process-Ion exchange method UNIT - V POLYMERS Introduction to polymers-Polymerization process-types of polymerization Elastomers: natural rubber – volcanization of rubber – compounding of rubber- Synthetic rubbers: preparation, properties and engineering applications of Buna
	 N, Neoprene, Thiokol and silicon rubbers Plastomers: Thermosetting and thermoplastics-Moulding constituents of plastics-Preparation, properties and engineering applications of PVC, Bakelite, Nylons and Urea-Formaldehyde
Text Books & Reference Books:	 Text Books: 1.Engineering Chemistry by KNJayaveera, GVSubba Reddy and C. Ramachandraiah, McGraw Hill Higher Education, Foruth Edition, New Delhi 2.A Text book of Engineering Chemistry by SS Dhara, S. Chand Publications, New Delhi Reference Books: 1.A Text Book of Enigneering Chemistry, Jain and Jain, DhanapathiRai Publications, New Delhi 2. Engineering Chemistry by K.B.ChandraSekhar, UN.Das and Sujatha Mishra, SCITECH Publications India Pvt Limited. 3.Concepts of Engineering Chemistry – C. Parameswara Murthy, C.V.Agarwal and Andra Naidu 5.Chemistry of Engineering Materials, C.V.Agarwal ,C.Parameswaramurthy and Andranaidu 6.Text Book of Engineering Chemistry, Shashichawla, Dhanapathirai Publications.
E-Resources:	http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm

<u>13CS1001 – C PROGRAMMING & DATA STRUCTURES</u>

Course Category:	Co	omputing	Credits:	8		
Course Type:		neory	Lecture-Tutorial-Practical:	3-1-0		
· · ·		knowledge of	Sessional Evaluation:	40		
		computer	Univ.Exam Evaluation:	60		
Pre-requisite:		operation	Total Marks:	100		
-	•	MS-office				
		Text editor				
Course Objectives:	 To describe fundamentals of C programming such as variables, conditional and iterative execution, methods, etc. Arrays, Strings, Functions Storage classes, pointers, structures Data structures, stacks and queues Graphics and trees, searching and sorting 					
	CO1		amentals of programming such as variable	es conditional		
	COI		ecution, methods, etc.	s, conunional		
	CO2		blve programming problems using a procedu	ural and		
	02		proach with functional decomposition.			
Course	CO3		lge of computing and mathematics using sin	mple data		
Outcomes:	005	structures.	age of computing and mathematics using sin	iipie data		
	CO4		o use pointers, memory allocation and data	handling		
		through files in 'C'.				
	CO5		e process of compiling, linking, and runni	ng a program		
		using a comput		8 1 8		
			UNIT – I			
	Algorithms, flow charts, Program Development Steps, Introduction To C Language: Basic Structure of C Program, Identifiers, Basic data types, Variables, Operators. Operator Precedence and Associativity, Expression Evaluation, Type conversions. Selection Statements: Various forms of if statements, switch statement, Iteration: while, do-while, for statements, other control altering statements– break, continue, goto and exit. UNIT – II					
	Arrays: Declaration, initialization, accessing elements, storing elements, two-					
	dimensional and multi-dimensional arrays, applications of arrays.					
	Strings- Declaration, initialization, Built-in and user-defined String handling					
	Functions					
Course Content:	Functions : Basics, call by value and reference, recursive functions, Scope rules. UNIT – III					
	Storage Classes: auto, register, static, extern. Type qualifiers, Pre-processor					
	Directives. Pointers : Initialization of pointers, Address Arithmetic, Dynamic memory allocation functions, array of pointers, pointers to functions, command–line arguments.					
	Structures : Declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, pointers to structures, self-referential structures, unions, bitfields. UNIT – IV					
	of Op	erations in sing	rview of Data Structures, Linked lists – ir gly linked list, Stacks & Queues : Basi ks and queues using arrays and linked lists,	c Operations,		

	UNIT –V			
	Graphs And Trees: Representation and Traversals.			
	Searching And Sorting: Sorting- selection sort, bubble sort, insertion sort,			
	quick sort, merge sort. Searching – linear and binary search methods.			
	Text Books:			
	1.C Programming & Data Structures, B.A.Forouzan and R.F. Gilberg, Third			
Text Books &	Edition, Cengage Learning.			
Reference Books:	2.Problem Solving and Program Design in C, J.R. Hanly and E.B. Koffman,			
	Fifth Edition, Pearson Ed.			
	Reference Books:			
	1. The C programming language: Kernighan B W and Ritchie D M.			
	2.An Introduction to Data structures with applications: Tremblay J P and			
	Sorenson P G.			
	http://nptel.ac.in/courses			
E-Resources:	http://iete-elan.ac.in			
	http://freevideolectures.com/university/iitm			

Course Category:	Professional core	Credits:	6	
Course Type:	Theory	Lecture-Tutorial-Practical:	3-1-0	
Course Type.	Concept of e.m.f, potential	Sessional Evaluation:	40	
	difference, current, ohm's	Univ.Exam Evaluation:	60	
	law, resistance, resistivity,	Total Marks:	100	
	series and parallel		100	
	connections, power			
	dissipation in resistance,			
	effect of temperature on			
	resistance			
Pre-requisite:	Capacitors, with uniform and			
r re-requisite.	composite medium, energy			
	stored in capacitor, R-C time			
	constant.			
	Magnetic field, Faraday's			
	laws of Electromagnetic			
	induction, Hysteresis and			
	eddy current losses, energy			
	stored in an inductor, time			
	constant in R-L circuit.			
	• To understand the basic conc	cepts of circuit analysis.		
	• To understand Single Phase			
	• To understand Resonance co			
	 To understand Resonance concept. To understand the concepts of Network topology. The course intends to provide an overview of the principles, operation and 			
Course	application of the analog building blocks like diodes, BJT, FET etc.			
Objectives:				
	CO1 Able to understand the b	basic concepts of D.C circuits, Con	upled coils	
	and Network topology.			
Course	CO2 Able to fundamental concepts of single phase A.C circuits.			
Outcomes:		asic concepts of Resonance and pe	erform Steady	
	state analysis of A.C circ	cuits.		
	CO4 Able to understand the b	asic properties of semi-conductor	materials	
	CO5 Able to understand the c	haracteristics of semi-conductor d	evices.	
		UNIT – I		
	Concept of Electric Circui	its: Active and passive eleme	ents, Ideal &	
		sformation, V-I Characteristics		
	C elements, Kirchhoff's laws , Network reduction techniques, Star-Delta transformation, Mesh & Nodal analysis, Concept of Super mesh and Super node.Graph theory: Network topology, Cut set and Tie set matrices.			
	Duality & Dual circuits-Concept of mutual inductance, Concept of coupling and			
	dot convention. UNIT – II			
		Periodic wave forms - average		
		Form factor and crest factor, Pha	•	
	difference - phase notation, Concept of reactance, impedance, susceptance			
		-active power, Power factor-po	ower triangle,	
Course Content:	Response of R, L and C element	s for sinusoidal excitation.		

<u>13EE1001 – BASIC ELECTRICAL SCIENCES</u>

UNIT – III			
Steady state analysis: RL, RC and RLC circuits for sinusoidal excitation,			
Phasor diagrams.			
Resonance: Series and parallel Resonance, Half power frequencies, Bandwidth			
and Q factor, Relation between half power frequencies- Bandwidth – Quality			
factor.			
UNIT-IV			
Junction diode: Band structure of PN- junction – current components- Volt ampere characteristics and its temperature dependence – diode resistance and			
capacitance- Zener diode and tunnel diode.			
Opto Electronic Devices: Photo emission, principle of operation of photo			
conductors, photo diodes, transistors, LED and LCD.			
UNIT-V			
Bipolar Junction Transistor: Transistor action- PNP and NPN transistors. CB,			
CE, CC configurations and their characteristics analytical expressions for			
transistor characteristics- Specifications of BJT- Determination of h- Parameters			
from BJT characteristics.			
Field Effect Transistor: Construction and operation Characteristics and			
applications of JFET.			
Text Books: 1. Circuits & Networks: A.Sudhakar and Shyam Mohan – TMH			
 Circuit S & Networks: A.Sudnakar and Shyani Mohan – Twitt Circuit Theory: A.Chakarabarti - Dhanpat Rai 			
3. Electronic devices and circuits by Boylestad, Louis Nashelsky, 9ed,2008			
PE			
4. Engineering Circuit Analysis: William Hayt & Kemmerly, TMH			
5. FLOYD - "Electronic devices ", Pearson education.			
Reference Books:			
1.Network Analysis: Vanvalkenberg 3ed, PHI			
2. Mottershed, "Electronic devices and circuits", Prentice Hall of India.			
3. Millman and Halkias, "Integrated Electronics" MC Graw Hill & Co.,			
4.David.A.Bell. "Electronic Devices and circuits", PHI.			
5.Adel S.Sedra, Kenneth C.Smith, "Micro Electronic Circuits", Holt Sander's Japan			
http://nptel.ac.in/courses			
http://iete-elan.ac.in			
http://freevideolectures.com/university/iitm			

Course Category:	Hum	anities			Credits:	4
Course Type:	Pract			Lecture-Tu	torial-Practical:	0-0-3
	• Al				onal Evaluation:	40
		derstand			am Evaluation:	60
		nglish			Total Marks:	100
		nguage			i otar marins.	100
Pre-requisite:		bility to use				
i i e i equisite.		nguage in				
		formal				
		tuations				
		inimum				
		oility to				
		erceive				
		ings around				
	LII.	lings around				
	Г • Т	o equip with	listening	to comprehend t	he speech of peop	le of different
		ackgrounds		to comprehend (and speech of peop	in anterent
		U U	xpress flu	ently and approp	riately in social ar	nd professional
		ontexts	1	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5	1
Course	• 1	To help to over	come inh	ibitions and self-	consciousness wh	ile speaking in
Objectives:		English and to I				1 0
	• V	Write effective	ly and pe	rsuasively and p	roduce different ty	pes of writing
					and argument as w	
		ritical and ana		·	C	
	 Read different genres of texts, infer implied meanings and critical 				and critically	
					ell as for method of	
	CO1 (Comprehends	confiden	tly and respond	appropriately to	the speech of
	multiple speakers					
Course	CO2 E					
Outcomes:	CO3 Communicate and converse with general clarity using proper					
	р	ronunciation	which all	ow for overall in	telligibility.	
	CO4 N	Jarrate with ea	ase logica	lly and gracefull	ly	
	CO5 Comprehend information in data and represent in pictorial format and			ial format and		
	g	raphs				
	I. I	Listening Skill				
			ing for Pl			
			ing for D			
		• Listeni	ing for In	formation		
	пс	nooleina Clait	. .			
	II. S	Speaking Skills				
			ucing The	emserves		
		• Phonet		Introduction of	Counda Variale	Conservation
Course Content:			1.		Sounds- Vowels a	x Consonants
			2.	Syllables Inflections		
			3. 4.	Stress & Intona	tion	
		• Jam	4.	Suess & Intolla	1011	
			nora			
		• Extemp	-	intional Distant	a & Talanhanis (onvorationa
			•	ational Dialogue	es & Telephonic C	onversations
	<u> </u>	• Presen	tations			

<u>13SH10P1 – ENGLISH LANGUAGE LABORATORY</u>

	• Debates
III.	Reading Skills:
	News Paper Reading
IV.	Writing Skills:
	Story Writing
	Description
	1. Object
	2. Place
	3. Person
	4. Situation
	Information Transfer
	Giving Directions & Instructions
	Email Writing

<u> 13ME101P – WORKSHOP</u>

Course Category:	Sc	iences	Credits:	4	
Course Type:	Practical		Lecture-Tutorial-Practical:	0-0-3	
		Physical	Sessional Evaluation:	40	
		strength	Univ.Exam Evaluation:	60	
		General	Total Marks:	100	
Pre-requisite:		knowledge			
		Knowledge			
	•	on			
		dimensions			
		unitensions			
	•	Types of carpe	ntry, fitting tools & types of joints.		
		• • • •	- definition, working tools, operations	forming &	
	•		- definition, working tools, operations	- Ionning &	
Course		bending.			
Objectives:	•	• •	lry tools and their usage in moulding proces		
Objectives.	•	• •	ing tools, machine tools, cutting tools (Lath	e, Drilling).	
	•	-	wledge in various AC & DC circuit parts.		
	•		basic knowledge of desk top computers&	power point	
	004	presentation.		1. 6	
	CO1	1	in the different tools of usage in carpent	ry and fitting	
		sections.		6 1	
	CO2	•	e basic knowledge in the manufacturing pr		
C	GO 1		g process & usage of tools in their respecti	ve sections.	
Course	CO3		he circuits of household wiring.	1 . 1	
Outcomes:	CO4		n the different tools which are using in r	nachine shop,	
	welding shop and black smithy.CO5Students are able to learn the physical recognition of different electrical components like Resistances, Inductances, Capacitances and their				
		▲			
			gain the knowledge of computer periphe	erais working,	
		sharing& power point presentation.			
	LIST OF EXPERIMENTS				
	CARPENTRY				
	1. Planning sawing and grooving				
	2.	-			
	3.	Half Lap Dove	tail Joint		
	4.	Mitre Faced B			
	5.	Mortise and Te	enon Joint		
	FITTI				
	-	ht fitting			
		V-fitting			
	2.	1 0			
	3. Semi-circular fitting				
	4. Dovetail fitting				
Course Content:	FOUN				
	1.	Stepped block			
	 2. Dumb bell 3. Flanged pipe TINSMITHY 1. Square tin 2. Circular tin 				
	3. Funnel				
	DEMO	J			

 (a) Metal cutting (b) Welding (c) Black smithy ELECTRICAL WIRING 1. (a) One lamp controlled by one switch (b) Two lamps controlled by one switch in Series and Parallel (c) Two lamps controlled by one switch in Series and Parallel combinedly
 2. (a) Two lamps controlled by two switches independently (b) One lamp controlled by two two-way switched (staircase connection) IT WORK SHOP Assembling a desk top computer Connecting two computers using wire and without wire Preparation of a power point presentation
ELECTRONICS (a) Identification of components (b) Calculation of values of components like (i) Resistance (ii) Capacitance (iii) Inductance
 2. Soldering Practice 3. Operation of CRO (a) Measurements of Parameters (b) Lijjajous Figure

<u>13CS10P1 – PROGRAMMING LABORATORY</u>

Course Category:	Computing	Credits:	4		
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3		
Jourse Type.			40		
	• knowledge of		40 60		
Due ve guigite.	computer	Univ.Exam Evaluation:			
Pre-requisite:	operation	Total Marks:	100		
	• MS-office				
	• Text editor				
		fundamentals of C programming such	as variables,		
	conditional an	d iterative execution, methods, etc.			
Course	 Arrays, String 	s, Functions			
Objectives:	 Storage classe 	es, pointers, structures			
	Data structure	s, stacks and queues			
	Graphics and	trees, searching and sorting			
	*	n for a problem by writing a program.			
		hing and sorting algorithms using loop state	nents		
Course	^	ne directory program using files concepts.			
Outcomes:	· · · · · · · · · · · · · · · · · · ·	s and queues programs using structures and	pointers		
	concepts.	1 1 6 6			
		programs using structures and pointers concepts.			
		LIST OF EXPERIMENTS	1		
		<u></u>			
	1) Write a C prog	gram to implement the following			
		entigrade to Fahrenheit and vice versa ($f=(9/5)*c+32$)			
		e n natural numbers ($(n(n+1))/2$)	, ,		
	-	e squares of the n natural numbers ($(n(n+1))$	(2n+1))/6		
	-	d midpoint of line using its end points (
		1),midpoint -> $x=x1+x2/2$, $y=y1+y2/2$)	F- ()-		
		and remainder based on two integers i and j.	(q = i/i, r = i-		
	q*j)		V1 J ³		
		circumference of a circle ($\pi r 2\& 2\pi r$)			
		possible roots of a quadratic equation	of the form		
	ax2+bx+c=0.				
	3) Write a C prog	gram to arrange three numbers in ascending	order using		
	i) Ternary of		U		
	ii) if stateme	•			
	4) Write a C prog	gram to			
Course Content:	i) Find the g	rade of a student by reading marks			
	ii) Convert th	ne given digit into word.			
	5) Write a C pro	ogram to implement the arithmetic operation	ons (+,-,*, %)		
		case statement.			
	6) Write a C prog	gram to find the			
	i) Factorial				
	ii) G.C.D of	two numbers.			
	7) Write a C prog	gram to			
		e sum of individual digits of a given number			
		e number to a single digit.			
	8) Write a C prog				
	1) Prime nur	nbers from 1 to n			

9) Write a C program to find
i) The largest and smallest number in a list of integers
ii) Sum of $1! + 2! + 3! + \dots + n!$ using while loop.
10) Write a C program to evaluate $1-1/2! + 1/3! - 1/4! + \dots + 1/n!$ using for
loop.
11) Write a C program to implement Fibonacci series using do while loop.
12) Write a C program to evaluate the sum of series $1+x/1! + x^2/2!$
$+x^{3}/3!n!.$
13) Write a C program to implement the following
i) Length of the given string
ii) Reverse of the given string
iii) Copy one string into another
iv) Comparison of two strings
v) Concatenation of strings
vi) String handling functions (any five)
14) Write a C program to check whether the given string is a palindrome or
not.
15) Write a C program to implement
i) Matrix addition
ii) Matrix multiplication.
16) Write a C program to implement factorial of a given number using
recursion.
17) Write a C program to implement
i) Employ salary calculation
ii) Student percentage Calculation.
18) Write a function that returns a union with values of say Basic, DA,
HRA etc. at different times based on the argument passed. Compute the
salary of the employee in main function after calling the above function
repeatedly.
19) Write a C program to implement pointer arithmetic.
20) Write a C program for
i) Call by value
ii) Call by reference.
21) Write a C program to find minimum and maximum values in a given
array using pointers.
22) Write a C program to display
i) Five arguments from command line arguments
ii) Addition of two numbers using command line arguments.
23) Write a C program to implement stacks using arrays.
24) Write a C program to implement Single Liked List operations.
25) Write a C program to
i) Convert infix to postfix expression.
ii) Evaluate Postfix expression.
26) Write a C program to implement
i) Linear search
ii) Binary search.
27) Write a C program to implement
i) Bubble sort
ii) Selection sort.
28) Write a C program to implement Single Liked List operations.

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR:NELLORE) SPSR NELLORE DIST II YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMISTER ELECTRONICS AND COMMUNICATIONS ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2014-2015)

(For the batch admitted in the academic year 2013-2014)

							Evaluation							
S.No	S.No Course Course Title Code		Instruction Hours/Week		Credits	Sessic Test		Sessic Test		Total Sessional Marks (Max. 40)	End Sem Examin		Maximum Total Marks	
		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	13SH2101	Engineering Mathematics-III **	3	1	-	4	2	40	2	40		3	60	100
2	13EC2101	Signals&Systems**	4	-	-	4	2	40	2	40		3	60	100
3	13EC2102	Electronic Devices & Circuits**	3	1	-	4	2	40	2	40	0.8*Best of two+0.2*least	3	60	100
4	13EC2103	Electromagnetic Fields	3	1	-	4	2	40	2	40	of two	3	60	100
5	13EE2103	Circuits & Networks**	4	-	-	4	2	40	2	40		3	60	100
6	13EE2120	Electrical Technology	3	1	-	4	2	40	2	40		3	60	100
		PRACTICALS												
7	13EC21P1	Electronic Devices Lab	-	-	3	2		-	-	-	Day to Day	3	60	100
8	13EE21P8	Electrical Technology Lab	-	-	3	2		-	-	-	Evaluation and a test	3	60	100
		TOTAL	24	-	06	28	-	-	-	-	(40 Marks) - 480		480	800

<u>13SH2101 – ENGINEERING MATHEMATICS-III</u> (Common to EEE and ECE)

Course Category:	Mathematics	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practical:	4-0-0
	Engineering	Sessional Evaluation:	40
Pre-requisite:	maths	Univ.Exam Evaluation:	60
		Total Marks:	100

	1									
		solve partial differential equations.								
Course	2. To understand special mathematical functions and their application.									
Objectives:	3. App	bly analytical functions to solve flow problems.								
	4. To 1	earn about residue theorem and evaluate definite integrals.								
		understand and apply Z transforms to indefinite integrals.								
	CO1	Understand the applications to the solution of partial differential								
		equations, one dimensional wave equation, one dimensional heat								
		equation and two dimensional Laplace equation to solve initial and								
Course		boundary value problems in a physical situations satisfying the								
Outcomes:		conditions								
Outcomes.	CO2	Understand the solutions of differential equation, linear differential								
	02	variable coefficients, Bessel functions and Legendre functions.								
		variable coefficients, besser functions and Legendre functions.								
	CO3	Understand the complex analytical, Cauchy-Riemann equations &								
		Elementary complex functions								
	CO4	Understand the complex integration, Cauchy's integral theorem,								
		Taylor's and Laurent's equations								
	CO5	Understand the Z-Transformations of standard functions and their								
		properties, Convolution theorem and the applications of Z- transforms								
	to difference equations.									
	UNIT-I									
		ICATION OF PARTIAL DIFFERENTIAL EQUATIONS: Methods								
		paration of Variables – One dimensional Wave equation – One								
	dimen	sional Heat flow equation – Two dimensional Laplace equations.								
		UNIT-II								
	SPEC	IAL FUNCTIONS: Bessel functions – Properties– Recurrence								
	formu	lae for Bessel function – Generating function for $Jn(x)$ –								
	Orthog	gonally of Bessel Functions. Legendre functions – Rodrique's formula								
		currence relation for $Pn(x)$ – Generating function for $Pn(x)$ –								
	Orthog	gonality of Legender polynomials.								
		UNIT-III								
	COM	PLEX ANALYSIS-I: Analytical functions, Cauchy - Riemann								
	equati	ons, Construction of Analytic function, Applications to flow								
		ms. Conformal mapping–Bilinear transformations.								
	proofe	UNIT-IV								
Course Content:	COM	PLEX ANALYSIS-II: Complex integration – Line integral – Cauchy's								
		m – Cauchy's integral formula – Taylor's theorem and Laurent's								
		m (without proof) – Singularities – Poles – Residues – Residue theorem –								
		ation of real definite integrals.								
		UNIT-V								
	Z-TR	ANSFORMS AND DIFFERENCE EQUATIONS: Z – Transform of								
		standard functions- Properties of Z-Transforms – Shifting properties –								
		value theorem and final value theorem – Inverse Z- Transform –								
		blution theorem – Inversion by partial fractions – Region of								
		rgence – Applications to difference equations.								
	Conve	Seree Approvidence equitions.								

	Text Books :						
	1. Higher Engineering Mathematics-B.S.Grewal, Khanna Publishers.						
Text Books &	2. Engineering Mathematics – B.V.Ramana-TMH.						
Reference Books:	3. Advanced Engineering Mathematics-Erwin kreyszing.						
	Reference Books:						
	1. Higher Engineering Mathematics- H K Das et al.						
	2. Engineering Mathematics-III – TKV Iyengar, S.Chand.						
	3. Engineering Mathematics-III - M K.Venkataraman.						
	http://nptel.ac.in/courses						
E-Resources:	http://iete-elan.ac.in						
	http://freevideolectures.com/university/iitm						

<u>13 EC 2101 – SIGNALS AND SYSTEMS</u>

Course category:	Program core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practical:	4 - 0 - 0
Prerequisite:	The prerequisite to the basic signals and systems course is Ordinary Differential Equations.	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	

Objectives 2. To understand Fourier series and Fourier transform of various signals. 3. Analysis and Design of different types of Continuous Time Systems. 4. To provide mathematical background and sufficient experience so that the student can read, write, and understand various problems involved in Discrete Time Signals and Systems. 5. To teach students how to write a Matlab program and its execution. Course Upon successful completion of the course , the students will able to: Outcomes CO1 Define the signals and a systems with examples. C02 Define the Fourier Transform and its properties. C03 Explain the operations on discrete time signals. C04 Explain the operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier transform. Parseval's Theorem of Energy and Power signals. Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LT1 systems. Course content Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LT1 systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pa	Course	1. To understand & analyze the different types of Continuous Time Signals.						
3. Analysis and Design of different types of Continuous Time Systems. 4. To provide mathematical background and sufficient experience so that the student can read, write, and understand various problems involved in Discrete Time Signals and Systems. Course Upon successful completion of the course, the students will able to: Outcomes C01 C01 Define the signals and a systems with examples. C02 Define the Fourier Transform and its properties. C03 Explain the inter connections of LTI systems. C04 Explain the operations on discrete time signals. C05 Know the predefined key words and some control flow statements in MATLAB. UNIT:1 Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals. Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series. Fourier Transform : Existence of Fourier Transform. Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-11 Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Ripulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems: Unit impulse, step, ramp, and exponential signals – Periodicity si								
4. To provide mathematical background and sufficient experience so that the student can read, write, and understand various problems involved in Discrete Time Signals and Systems. 5. To teach students how to write a Matlab program and its execution. Course Outcomes Upon successful completion of the course, the students will able to: C01 Define the signals and a systems with examples. C02 Define the Fourier Transform and its properties. C03 Explain the inter connections of LTI systems. C04 Explain the inter connections of LTI systems. C05 Know the predefined key words and some control flow statements in MATLAB. UNIT-I Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform- Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-II Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission s		•						
and understand various problems involved in Discrete Time Signals and Systems. 5. To teach students how to write a Matlab program and its execution. Course Outcomes Upon successful completion of the course , the students will able to: C01 Define the signals and a systems with examples. C02 Define the Pourier Transform and its properties. C03 Explain the inter connections of LTI systems. C04 Explain the operations on discrete time signals. C05 Know the predefined key words and some control flow statements in MATLAB. UNIT-1 Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. Course content Fourier Series: Definition-Dirichlet's conditions – classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform-Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UINIT-II Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals th								
5. To teach students how to write a Maflab program and its execution. Course Outcomes Upon successful completion of the course , the students will able to: CO1 Define the signals and a systems with examples. CO2 Define the Fourier Transform and its properties. CO3 Explain the inter connections of LTI systems. CO4 Explain the operations on discrete time signals. CO5 Know the predefined key words and some control flow statements in MATLAB. UNIT-1 Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform-Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-1I Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LT1 systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission A and Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems: Discrete Time Signals and Systems: Unit impulse, step, ra								
Outcomes Coll Define the signals and a systems with examples. C02 Define the Fourier Transform and its properties. CO3 C03 Explain the inter connections of LTI systems. CO4 C04 Explain the operations on discrete time signals. CO5 C05 Know the predefined key words and some control flow statements in MATLAB. UNIT-1 Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign at exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-II Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems. UNIT-IV Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals –								
C01 Define the signals and a systems with examples. C02 Define the Fourier Transform and its properties. C03 Explain the inter connections of LTI systems. C04 Explain the operations on discrete time signals. C05 Know the predefined key words and some control flow statements in MATLAB. UNIT-I Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. UNIT-II Course content Fourier Series: Definition-Dirichlet's conditions – classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-II Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems. UNIT-IV Discrete Time Signals and Systems: Unit impulse, st	Course	Upon successful completion of the course, the students will able to:						
CO2 Define the Fourier Transform and its properties. CO3 Explain the inter connections of LTI systems. CO4 Explain the operations on discrete time signals. CO5 Know the predefined key words and some control flow statements in MATLAB. UNIT-1 Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals - Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. UNIT-11 Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-11 Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems. UNIT-1V Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invari	Outcomes							
C03 Explain the inter connections of LTI systems. C04 Explain the operations on discrete time signals. C05 Know the predefined key words and some control flow statements in MATLAB. UNIT-1 Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. UNIT-11 Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform-Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-11 Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems: UNIT-1V Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convoluti and Correlation –Linear constant coefficient difference equation – Impulse response – Discrete time Fouri transfo								
CO4 Explain the operations on discrete time signals. CO5 Know the predefined key words and some control flow statements in MATLAB. UNIT-I Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform-Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-III Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LT1 systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems. UNIT-IV Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Convoluti and Correlation – Linear constant coefficient difference equation – Impulse response – Discrete time Fouri transform – Properties – Transfer function – System analysis using DTFT.								
CO5 Know the predefined key words and some control flow statements in MATLAB. UNIT-I UNIT-I Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-II Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems: UNIT-IV Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convoluti and Correlation –Linear constant coefficient difference equation – Impulse response – Discrete time Fouri transform – Properties – Transfer function – System analysis using DTFT.								
UNIT-1 Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign a exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform. Parseval's Theorem of Energy and Power signals. UNIT-III Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convoluti and Correlation –Linear constant coefficient difference equation – Impulse response – Discrete time Fourit transform – Properties – Transfer function – System analysis using DTFT.								
Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign at exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-III Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Convoluti and Correlation – Linear constant coefficient difference equation – Impulse response – Discrete time Fourier transform – Properties – Transfer function – System analysis using DTFT.		CO5 Know the predefined key words and some control flow statements in MATLAB.						
exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality Mean square error – Computation of moments, energy power, periodicity - power and energy spect densities – Auto and cross correlation signals. UNIT-II Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-III Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems: UNIT-IV Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convoluti and Correlation –Linear constant coefficient difference equation – Impulse response – Discrete time Fouri transform – Properties – Transfer function – System analysis using DTFT. <u>UNIT-V</u>		<u>UNIT-I</u>						
Course content Fourier Series: Definition-Dirichlet's conditions –classification of Fourier Series-properties of Fourier Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-III Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems. UNIT-IV Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convoluti and Correlation –Linear constant coefficient difference equation – Impulse response – Discrete time Fourier transform – Properties – Transfer function – System analysis using DTFT. UNIT-V		Continuous Time Signals : Signal classification – Dirac delta-types of signals unit sep, ramp, sign and exponential functions – Operations on signals- Analogy between vectors and signals – Orthogonality – Mean square error – Computation of moments, energy power, periodicity - power and energy spectral densities – Auto and cross correlation signals.						
Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier transform. Parseval's Theorem of Energy and Power signals. UNIT-III Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems. UNIT-IV Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convoluti and Correlation –Linear constant coefficient difference equation – Impulse response – Discrete time Fourier transform – Properties – Transfer function – System analysis using DTFT. UNIT-V		<u>UNIT-II</u>						
Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems. <u>UNIT-IV</u> Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convoluti and Correlation –Linear constant coefficient difference equation – Impulse response – Discrete time Fourt transform – Properties – Transfer function – System analysis using DTFT. <u>UNIT-V</u>	Course content	Series. Fourier Transform : Existence of Fourier Transform- Properties of Fourier Transform-Inverse Fourier						
signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes Band pass signals through band pass systems. UNIT-IV Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convoluti- and Correlation –Linear constant coefficient difference equation – Impulse response – Discrete time Four- transform – Properties – Transfer function – System analysis using DTFT. <u>UNIT-V</u>		<u>UNIT-III</u>						
Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convolution and Correlation – Linear constant coefficient difference equation – Impulse response – Discrete time Fourier transform – Properties – Transfer function – System analysis using DTFT. <u>UNIT-V</u>		Continuous Time Systems: Classification of systems – Linearity and time invariance – Transmission of signals through LTI systems – Convolution – Impulse response – Frequency response – Ideal filters – Distortion less transmission – Band Width – Rise time – Hilbert transform – Pre and complex envelopes – Band pass signals through band pass systems.						
signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convolution and Correlation – Linear constant coefficient difference equation – Impulse response – Discrete time Fourier transform – Properties – Transfer function – System analysis using DTFT. <u>UNIT-V</u>		<u>UNIT-IV</u>						
		Discrete Time Signals and Systems: Unit impulse, step, ramp, and exponential signals – Periodicity of signals – Operations of signals – Linear Shift Invariant(LSI) system – Stability – Causality – Convolution and Correlation –Linear constant coefficient difference equation – Impulse response – Discrete time Fourier transform – Properties – Transfer function – System analysis using DTFT.						
		<u>UNIT-V</u>						
MATLAB: Introduction – Basic operations on matlab – generation of signals – correlation-Convolution-		MATLAB: Introduction –Basic operations on matlab –generation of signals –correlation-Convolution-						

	Computation of Fourier Transform-Solving difference equations. Computation of Z-Transform
Text Books and reference Books:	 TEXT BOOKS: 1. Linear Systems and Signals : B.P.Lathi – Oxford University Press 2. Signals & Systems : A Anand Kumar - PHI REFERENCES: 1. Signals & Systems : J.S.Chittode – Technical Publications 2. Signals & Systems : A.V.Oppenhiem & A.S.Welslly with S.Hamid Naweb - PHI
E-Resourses	1. https://nptel.ac.in/courses 2. https://iete-elan.ac.in 3. https://freevideolectures.com/university/iitm

<u>13 EC 2102 – ELECTRONIC DEVICES AND CIRCUITS</u>

Course categor	y: Progra	am core	Credits:	4			
Course Type:	Theor	у	Lecture - Tutorial - Practical:	4 - 0 - 0			
Prerequisite:	funda circui constr	ovide students with the mentals of electronic ts including design, uction and testing of mental electronic circuits.	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	40 60 100			
Course Objectives	 To understand the operation of operation of SCR, DIAC, TRIAC, UJT, Half-wave, Full-wave an Bridge rectifiers, Analysis of filters with full wave rectifier. To understand the BJT biasing schemes, Hybrid model, Small signal analysis of single stage BJT 						
	3. To cin 4. To 5. To	cuits. o understand the FET biasing so o understand different types or	CB and CC amplifiers. t high frequencies, types of coupling, l schemes, high frequency response. f feedback circuits, Sinusoidal oscillat ey, Colpitt's and Crystal oscillator.				
Course Outcomes	Upon successful completion of the course , the students will able to: CO1 Understand the operation and sketch the transfer characteristics of SCR, DIAC and UJT. CO2 Define small signal single stage BJT amplifier. CO3 Define hybrid- π model of BJT amplifier with their typical values. CO4 Design different methods to bias FET amplifier.						
	transistors	LED and LCD.	ion, Principle of operation of photo c ion of SCR, DIAC, TRIAC and UJT.	onductors, photo diodes, photo			
	Rectifiers: Diode equivalent circuit, Half-wave, Full-wave and Bridge rectifiers, Analysis of filters with full wave rectifier.						
Course content	<u>UNIT-II</u>						
	BJT Amplifiers : BJT biasing schemes, Stability(Ico,VBE and β), Hybrid model, Small signal analysis of single stage BJT amplifiers, Comparison of CE, CB and CC amplifiers, Approximate model analysis, Effects of coupling and bypass capacitors on low frequency response.						
	<u>UNIT-III</u>						
	BJT High frequency analysis: Hybrid- π model at high frequencies, Parameters f_{β} and f_{T} .						
	Multistage Amplifiers: Types of coupling, Analysis of multistage amplifiers, overall Bandwidth of n-stage amplifier, Darlington and Bootstrap circuits.						

	<u>UNIT-IV</u>							
	FET Amplifiers: FET biasing scheme, Small signal model, Analysis of CS &CD amplifiers, High frequency response.							
	<u>UNIT-V</u>							
	Feedback amplifiers: Feedback concept, Classification, Effect of negative feedback on gain, Stability, Noise, Distortion, Bandwidth, Input and Output resistance. Different types of feedback circuits without analysis.							
	Sinusoidal Oscillators: Barkhausen criterion, RC phase shift, Wien Bridge, Hartley, Colpitts and Crystal oscillator.							
	TEXT BOOKS:							
Text Books and reference	1. Mottershed, "Electronic devices and circuits", PHI.							
Books:	2. Millman and Halkias, "Integrated Electronics", McGraw- Hill Co.							
	REFERENCES:							
	1.Boylestad, Louis Nashelsky "Electronic devices and circuits" 9ed, 2008PE.							
	2. David.A.Bell. "Electronic Devices and circuits", PHI.							
E-Resourses	 https://nptel.ac.in/courses https://iete-elan.ac.in https://freevideolectures.com/university/iitm 							

<u>13 EC 2103 – ELECTRO MAGNETIC FIELDS AND WAVES</u>

Course category:	Program core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practical:	4 - 0 - 0
Prerequisite:	The electromagnetic field extends indefinitely throughout space and describes the electromagnetic interaction	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	60

Course		derstand The Electrostatics, Magneto statics, Maxwell's Equations and EM Wave aracteristics.										
Objectives		arn scientific, mathematical and engineering principles that enable them to understand forces,										
		lds, and waves; know how devices work that use those principles and phenomena.										
Course		Upon successful completion of the course, the students will able to:										
Outcomes	CO1	Use Gauss Law, Coulomb's law to find fields and potentials for a various situations.										
	CO2	Derive the continuity equation and give the importance of current density.										
	CO3	Explain Biot-Savart's Law and Ampere's circuital law.										
	CO4	Explain Faraday's Law.										
	CO5	Discuss the importance of Linear, Elliptical and circular polarization										
		<u>UNIT-I</u>										
		DSTATICS: Coulomb's Law –Electric Field Intensity –Electric Flux Density –Gauss's Law- tential-Potential Gradient-Energy Stored in Electric Field.										
	<u>UNIT-II</u> CONDUCTORS AND DIELECTRICS:Current and Current Density- Continuity Equation-Conductors- Ohms Law-Dielectrics: Dipole Moment-Polarization-bound Charge Densities-Boundary Conditions- Poisson's and Laplace's equations-Capacitance-Energy density											
Course content		<u>UNIT-III</u>										
	MAGNETO STATICS: Biot-Savart's Law - Ampere's circuital law – Lorentz Force Law – Magnetic field intensity H-Magnetic Vector Potential-Poisson's and Laplace's Equations-Dipole Moment-Bound Current Densities-Boundary Conditions-Energy Stored in Magnetic Field.											
	<u>UNIT-IV</u>											
	circuital lav	DMAGNETIC WAVES: Faraday's Law – Displacement Current – Modified form of Ampere's w – Maxwell's Equations -Poynting theorem. Wave Equation – UniformPlane Waves in Lossless in Lossy Media.										
	<u>UNIT-V</u> POLARIZATION, REFLECTION AND REFRACTION: Linear, Elliptical and circular polarization – Reflection of Plane Wave from a conductor – normal incidence – Reflection of Plane Waves by a perfect dielectric – Normal and Oblique Incidence –VSWR- Brewster angle.											
Text Books and reference Books:	2007.	w N.O.Sadiku: "Elements of Engineering Electromagnetics" Oxford University Press, 4thedition, rdan & K.G. Balmain "Electromagnetic Waves and Radiating Systems." Pearson Education/PHI										

	 REFERENCES: 1. Narayana Rao, N: "Elements of Engineering Electromagnetics" 6th edition, Pearson Education, New Delhi, 2006. 2.G.S.N. Raju, Electromagnetic Field Theory & Transmission Lines, Pearson Education, 2006 .
E-Resourses	1.https://nptel.ac.in/courses 2.https://iete-elan.ac.in 3.https://freevideolectures.com/university/iitm

<u>13EE2102 – CIRCUITS & NETWORKS</u> (Common to EEE and ECE)

Course Category:	Pr	ofessional core	Credits:	4					
Course Type:	Th	eory	Lecture-Tutorial-Practical:	4-0-0					
		sic concepts of	Sessional Evaluation:	40					
		m's Law,	Univ.Exam Evaluation:	60					
		rchhoff's Laws.	Total Marks:	100					
Pre-requisite:		sic knowledge of							
		lculus and							
		gonometric							
		inciples are required.							
	r	I							
	1.To p	rovide fundamentals of	f Electrical circuits.						
Course		nderstand concepts of							
Objectives:			locus diagrams for electric circuits.						
			Three phase circuits and calculations						
		earn the concepts of ele	-						
	CO1	2	g principles of circuits by vario	ous theorems,					
			to draw the locus diagrams of serie						
		circuits.	C	1					
	CO2	Ability to analyze th	e basic features of three phase circu	its, phase-line					
Course		5 5	& unbalanced systems and measure	· 1					
Outcomes:		5							
	CO3	phase power. They can understand	how to find the hybrid and transmiss	ion network					
		parameters from Z & Y parameters by inter-relationships.							
	CO4								
		conditions of networks, complex frequencies, pole – zero plots.							
	CO5	CO5 Able to Understand about transient response of circuits for different							
			e domain and Laplace transform methods.						
			UNIT –I						
	Network theorems: Superposition, Reciprocity, Thevenin's and Norton's								
	theorems, Maximum power transfer theorem, Millman's theorem, Application								
	of these theorems to DC and AC networks.								
	Locus diagrams of RL & RC series circuits, Locus diagrams of two branch								
	parallel circuits.								
	UNIT-II								
	Three	phase circuits: A	dvantages of three phase syste	ms - Phase					
	sequer	ice - Star - Delta t	ransformation - Balanced & unba	alanced three					
	phase	systems - Magnitud	le & phasor relationships betwee	n phase and					
	line vo	oltages & current in	balanced star and delta circuits -	- Analysis of					
Course Content:	balanc	ed and unbalanced	three phase circuits- measurement of	of three phase					
	power								
			UNIT-III						
			eters - Open circuit parameters -						
	-		parameters - inverse transmission	-					
	-	-	erse hybrid parameters - Inter-rel	-					
			ion for reciprocity and symmetry of						
			ers - Terminated two port netwo	orks – Image					
	parame	eters.							
			UNIT-IV						
		-	port & multi port networks - Immita						
			cessary conditions for driving poin						
	transfe	r tunction – Comple	x frequencies – Poles and zeros –	Time domain					

	response from pole zero plots – Restrictions on pole-zero locations. UNIT-V
	Transients: Transient response of RL, RC & RLC circuits for DC & AC excitations using time domain & Laplace transform techniques - Determination of initial conditions - Concept of time constant – Transformed circuits -Transient response of RL, RC & RLC circuits for other types of signals using Laplace transform methods.
Text Books & Reference Books:	 Text Books : 1. "Circuits & Networks" by A.Sudhakar and Shyam mohan – TMH publishers. 2. "Circuit Theory" by A.Chakarabarti - Dhanpat Rai publishers. 3. "Circuits & Systems" by K.M.Soni – Kataria Publishers. Reference Books: 1. "Network Analysis" by Vanvalkenberg 3rded, PHI publishers. 2. "Engineering Circuit Analysis" by Hayt & Kemmerly, TMH publishers.
E-Resources:	http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm

<u>13EE2120 – ELECTRICAL TECHNOLOGY</u>

Course Category:	Pro	ofessional core	Credits:	4				
Course Type:	Th	eory	Lecture-Tutorial-Practical: 4-0-0					
		e knowledge of	Sessional Evaluation:	40				
		ncipal of Electro	Univ.Exam Evaluation:	60				
		echanical Energy	Total Marks:	100				
Pre-requisite:	Co	onversion,						
_	Fu	ndamental concepts						
	of	magnetically						
	co	upled electric circuits						
		-	basic concepts of the Electrical Macl	hines working				
		modern Power System						
Course			teristics, operation and underlying the	neories of DC				
Objectives:	Machi							
			acteristics, operation and underlyin	g theories of				
		ormers.						
	CO1	5	DC machines to meet various rec					
	COA		aracteristics of different types of DC					
Course	CO2	Transformers.	the operation principle and diffe	rent types of				
Outcomes:	CO3		ne construction, principle of operation	and analyza				
Outcomes.	COS	i and analyze						
	CO4		hree phase Induction Motors.	and analyze				
	04	Able to understand the construction, principle of operation and analyze the performance of Alternators.						
	CO5		he construction, principle of operation and analyze					
	000		ingle phase Induction Motors.					
			UNIT – I					
	DC M	achines: Principle of o	nes: Principle of operation of the Generator - EMF equation – Types					
	of Generators, Magnetization and Load Characteristics, Principles of Operation							
	of DC Motors, Torque equation, Speed Control Methods, Efficiency							
	Calculations by Swinburne's test and direct load test.							
	$\frac{\text{UNIT} - \text{II}}{\text{Transformans}}$ Single phase transformars. Dringingle of exaction & types							
	Transformers: Single phase transformers, Principle of operation & types, Constructional Details, EMF equation, Phase Diagram on no load equivalent							
	circuit, Regulation from OC and SC tests.							
	<u>UNIT – III</u>							
Course Content:	Three Phase Induction Motors: Constructional features, Principles of Torque							
	production, Torque Equation, Slip, Torque Characteristics, Efficiency							
	calculation, Starting Methods.							
	carearanter, building includes							
	<u>UNIT – IV</u>							
	Alternator: Constructional Features, EMF equation, Coil span factor,							
	estimation of regulation by Synchronous impedance method.							
	$\frac{\text{UNIT} - \text{V}}{\text{Single Phase Induction Motors: Principle of Operation, Starting Methods,}}$ Types of Single phase Induction motors, Stepper Motors.							
	Types Text B		ion motors, stepper motors.					
			al Machines" Kataria & Sons.					
	1. 2.		al Machines" Khanna Publications.					
L	<i>4</i> •		ai machines Ananna i doneations.					

Text Books & Reference Books:	Reference Books: 1. "Electrical Machines" Nagrath and Kothari 2. "Electrical Technology" B.L. Thereja.
E-Resources:	http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm

13EC21P1 ELECTRONIC DEVICES LAB

Course Cate	gory	Program Core		Credits	2					
Course Type	e	Practical		Lecture-Tutorial- Practice	0-0-3					
				Sessional Evaluation:	40					
Prerequisite	Prerequisite		onics	Semester End Evaluation:	60					
				Total Marks:	100					
	1. U	nderstand the char	acteristics of var	rious Electronic Devices.						
	2. Demonstrates the uses and applications of semiconductor devices.									
Course Objectives	3. Determine the typical values of various electronic devices.									
	4. P	lot the characteristi	ics of various de	vices in terms of V & I.						
	5. Draw their equivalent circuits used in Electronic Circuits.									
			Upon Success	ful Completion of Course, Stude	nt will be able to					
	CO1		Determine the typical values of each and every electronic device							
Course	CO2		Draw V-I characteristics of all electronic devices.							
Outcomes	CO3		Find out the uses and applications of these devices.							
	CO4		-	Analyze the importance of semiconductor devices.						
	CO5		Demonstrates from V-I chara	how various parameters of the dev acteristics.	ices can be found					
Course Content	LIST OF EXPERIMENTS 1. P-N Junction diode characteristics (Ge & Si) . 2. Zener Diode Characteristics. 3. Bi-Polar Junction Transistor Characteristics (CE configuration). 4. Junction Field Effect Transistor characteristics. 5. Uni-Junction Transistor Characteristics. 6. Light Emitting Diode Characteristics. 7. Light Dependent Resistor Characteristics. 8. Photo Transistor Characteristics. 9. Thermistor Characteristics. 10. DIAC Characteristics.									

13EE21P8 ELECTRICAL TECHNOLOGY LAB

Course Cate	egory	Program Core	Credits	2						
Course Type	e	Practical	Lecture-Tutorial- Practice	0-0-3						
			Sessional Evaluation:	40						
Prerequisite	e	Basics of Electrical Components and motors	Semester End Evaluation:	60						
			Total Marks:	100						
Course	1.	-	c concepts of the Electrical Machine	es working in the						
Objectives	2. 3.	modern Power System. To understand the characteristics, operation and underlying theories of DC Machines. To understand the characteristics, operation and underlying theories of Transformers.								
			Course, Student will be able to							
	C01	Able to identify the DC machine characteristics of different types of the second secon	es to meet various requirements by a of DC machines	analyzing the load						

Objectives		To understand the characteristics, operation and underlying theories of DC Machines. To understand the characteristics, operation and underlying theories of Transformers.							
	1	Upon Successful Completion of Course, Student will be able to							
		ble to identify the DC machines to meet various requirements by analyzing the load haracteristics of different types of DC machines							
Course	CO2	Able to understand the operation principle and different types of Transformers.							
Outcomes		Able to understand the construction, principle of operation and analyze the performance of Three phase Induction Motors.							
		Able to understand the construction, principle of operation and analyze the performance of Alternators.							
		Able to understand the construction, principle of operation and analyze the performance of Single phase Induction Motors.							
		LICT OF EVDEDIMENTS							
		LIST OF EXPERIMENTS							
	1.	Excitation characteristics of							
		(a) Separately Excited DC Generator							
		(b) Self Excited DC Shunt Generator							
	2.	External Characteristics of DC Shunt Generator							
Course	3.	Brake Test on DC Shunt Motor							
Content	4.	Swinburne's Test							
	5.	Speed Control of DC Shunt Motor							
	6.	O.C & S.C Test on 1 ^o Transformer							
	7.	Load Test on 1 [®] Induction Motor							
	8.	Load Test on 3 ⁴ Induction Motor							
	9.	Voltage Regulation of an Alternator By EMF Method							
	10.	Equivalent Circuit of 1 [®] Induction Motor							
L									

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR:NELLORE) SPSR NELLORE DIST II YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMISTER ELECTRONICS AND COMMUNICATIONS ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2014-2015)

(For the batch admitted in the academic year 2013-2014)

							Evaluation							
S.No Course Code	Course Title	Instruction Hours/Week		Credits	Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	End Semester Examination		Maximum Total Marks		
		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	13SH2201	Engineering Mathematics-IV**	3	1	-	4	2	40	2	40		3	60	100
2	13EC2201	Switching Theory & Logic Design**	4	-	-	4	2	40	2	40		3	60	100
3	13EC2202	Random Signals & Stochastic Processes	4	-	-	4	2	40	2	40	0.8*Best of two+0.2*least	3	60	100
4	13EC2203	Analog Communications	4	-	-	4	2	40	2	40	of two	3	60	100
5	13EC2203	Pulse and Analog Circuits **	4	-	-	4	2	40	2	40		3	60	100
6	13SH2202	Economics & Accountancy **	4	-	-	4	2	40	2	40		3	60	100
		PRACTICALS												
7	13EC22P2	Electronic Circuits Lab	-	-	3	2		-	-	-	Day to Day	3	60	100
8	13EE22P9	Circuits & Networks Lab	-	-	3	2		-	-	-	Evaluation and a test	3	60	100
**		TOTAL	23	1	06	28	-	-	-	-	(40 Marks)	-	480	800

** Common to ECE,EEE

<u>13SH2201 – ENGINEERING MATHEMATICS-IV</u> (Common to EEE and ECE)

Course Category:	Mathematics	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practical:	4-0-0
	Knowledge of linear	Sessional Evaluation:	40
Pre-requisite:	and non-linear	Univ.Exam Evaluation:	60
	algebraic equations,	Total Marks:	100
	differential equations		
	and probability.		

		· · · · · · · · · · · · · · · · · · ·		
C	This course aims to equip the student with a basi			
Course	determination of roots of non-linear equations, curve fitting, solution of linear			
Objectives:	and non-linear algebraic equations, solution of ordinary differential equations.			
	Describes the numerical interpolation, dif	ferentiation and integration,		
	probability and statistics.			
	CO1 Students will be able to understand the			
	solving of non linear equations different			
	fundamental techniques of solving iter			
	Newton Raphson methods. Understandin			
	by the method of least squares method.	And also understand the rank		
	correlation and Regression of lines.			
	CO2 Understanding effectively Iterative m			
	Elimination with Pivotal condensation Tr	-		
	Gauss- Seidel and also understand	Newton – Raphson iterative		
Course	methods.			
Outcomes:	CO3 Understanding effectively Taylor's and			
	differential equations. To obtain mor			
	understand R-K Grill method, Miles Pro-			
	which plays an important role in engineer			
	CO4 To know the definitions of Newto			
	interpolation formulae. also to unders	tand Lagrange's interpolation		
	formula. Understand effectively by Rom			
	CO5 Students will be able to understand the d	iscrete and continuous Random		
	variables .Understand effectively	three important theoretical		
	distributions Binomial, Poisson and Normal distribution.			
	UNIT-I			
	DETERMINATION OF ROOTS OF NON-LINEAR EQUATIONS:			
	Bisection Method - Iterative methods - Fals	i position method - Newton		
	Raphson method.			
	CURVE FITTING: Fitting a straight line -	Second degree curve by the		
	method of least Squares - Power Curve by	the method of least Squares.		
	Correlation: Coefficient of correlation – Rank con	rrelation – Regression of lines.		
	UNIT-II			
		N-LINEAR ALGEBRAIC		
	EQUATIONS: Iterative methods – Gaus Jor	dan- Gauss Elimination with		
	Pivotal condensation – Triangular factorization	methods - Gauss- Seidel and		
	Newton – Raphson iterative methods.			
	UNIT-III			
Course Content:	SOLUTION OF ORDINARY DIFFERENT			
	Series method - Euler's method -Euler's modified method - Runge-Kutta			
	Second and Fourth order methods - Runge-K	Kutta Grill method – Milne's		
	Predictor and Corrector methods for first order equations.			

	UNIT-IV			
	NUMERICAL INTERPOLATION, DIFFERENTIATION AND			
	INTEGRATION: Newton's forward and backward interpolation formula –			
	Lagrange's interpolation formula - Numerical Differentiation by Richardson's			
	extrapolation—Numerical integration by Romberg method.			
	UNIT-V			
	PROBABILITY AND STATISTICS: Introduction – Random variables –			
	Discrete and Continuous distributions - Binomial, Poisson's and Normal			
	distributions.			
	Text Books :			
	1. Higher Engineering Mathematics by Dr. B.S. Grewal.			
Text Books &	2. Higher Engineering Mathematics by H.K Das et al.			
Reference Books:	3.Numerical Methods by Balagurusamy, Tata McGraw-Hill			
	Reference Books:			
	1.Numerical methods by S.Armugam etal, Scitech			
	2.Engineering Mathematical Methods by B.V.Ramana, TMH			
	http://nptel.ac.in/courses			
E-Resources:	http://iete-elan.ac.in			
	http://freevideolectures.com/university/iitm			

13EC2201 - SWITCHING THEORY & LOGIC DESIGN

(Common for EEE & ECE)

Course category:	Program core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practical:	4 - 0 - 0
Prerequisite:	Basic theorems of algebra , basic gate logic functions and	Sessional Evaluation :	40
	Semiconductor memory device	Univ.Exam Evaluation:	60
		Total Marks:	100

Course	1. To introduce basic postulates of Boolean algebra and shows the correlation between Boolean expressions.			
Objectives	-			
		troduce the methods for simplifying Boolean expressions.		
		itline the formal procedures for the analysis and design of combinational circuits and		
	-	ential circuits. troduce the concept of memories and Memory expansion.		
		ustrate the concept of synchronous and asynchronous sequential circuits		
Course	J. 10 III	Upon successful completion of the course , the students will able to:		
Outcomes		opon successful completion of the course, the students will able to.		
outcomes	CO1	understanding of the fundamental concepts and techniques used in digital electronics and understand and examine the structure of various number systems and its application in digital design		
	CO2	Ability to identify basic requirements for a design application and propose a cost effective solution		
	CO3	The ability to understand, analyze and design various combinational circuits		
	CO4 The ability to understand, analyze and design various sequential circuits and The a identify and prevent various hazards and timing problems in a digital design.			
	CO5	The ability to understand Memories		
		<u>UNIT – I</u>		
	 Number Systems and codes:Number systems, conversions, complements, arithmetic operations, signe binary numbers, BCD, Grey, ASCII, Parity bit and hamming code. Boolean algebra and Logic Gates:NOT, OR, AND operations, Boolean theorems,De-Morgan's theorem logic gates,Universal gates and IEEE standard logic symbols. 			
		<u>UNIT – II</u>		
	Simplification	al logic circuits: Standard forms of logical functions, Min-term and max-term specifications, by K-maps, Incompletely specified functions, prime implicants, essential prime implicants, logical functions using gates.		
Course content	<u>UNIT -III</u>			
content	Design of combinational circuits: Design procedure, Binary adders and sub-tractor, Serial and adders, IC parallel adder, Decoders, encoders, Multiplexers, De-multiplexers and Digital ma comparator.			

	<u>UNIT – IV,</u>			
	Sequential circuits: Latch, flip-flops (SR, JK, D & T), Timing problems, master-slave flip-flop and Shift registers.			
	Design of sequential circuits: Asynchronous, synchronous counters, Ring and Johnson counters.			
	<u>UNIT - V</u>			
	Memory Devices: Terminology, ROM, PROM, EPROM, EEPROM, Semiconductor RAM (SRAM & DRAM) and its architecture, Memory expansion.			
Text	TEXT BOOKS:			
Books and reference	1. Digital design by Morris Mano, Pearson Education Asia			
Books:	2. Fundamentals of logic design by Roth & Charles, 2nd Edition, West Publishing Company, 1979			
	3. Ronald J.Tocci, Neal S.Widmer, "Digital systems — Principles and applications".8th edition, Pearson Education Asia, 2001.			
	REFERENCES:			
	1. Fundamentals of logic circuits by A.Anand Kumar, PHI Learing			
	2. Jon M, Yarbrough, "Digital logic — applications and design", Thomson — Brooks India edition.			
E-	1. http://nptel.ac.in/cources			
Resources	2. https:// iete-elan.ac.in			
	3. https://freevideolectures.com/university/iitm			
	4.https://www.youtube.com/watch?v=pJrqIgAM0o4&list=PLnSlSuYL9wG7C7Jk_mbXQ0LC0o7HQR sMD			
	5. https://www.youtube.com/watch?v=K73N9ES_8nI			

13EC2202-RANDOM SIGNALS AND STOCHASTIC PROCESSES

Course category:	Program core	Credits:	4
Course Type:	Theory	Lecture - Tutorial - Practical:	4 - 0 - 0
Prerequisite:	Knowledge of Signals and systems (13EC2101), integrations and differential equations.	Sessional Evaluation : Univ.Exam Evaluation:	
		Total Marks:	100

Course Objectives	 To provide mathematical background and sufficient experience so that the student can read, write, and understand sentences in the language of probability theory, as well as solve probabilistic problems in signal processing and Communication Engineering and to introduce students to the basic methodology of "probabilistic thinking" and to apply it to problems To understand basic concepts of probability theory and random variables, how to deal with multiple random variables, Conditional probability and conditional expectation, joint distribution and independence, mean square estimation. To understand the difference between time averages and statistical averages. Analysis of random process and application to the signal processing in the communication system. To teach students how to model a noise source and design of filters for white and colored noises and maximize S/N ratio. 			
Course Outcomes	Upon successful completion of the course , the students will able to:			
	CO1 Explain fundamentals of probability theory, random variables and random processes			
	CO2 Understand the mathematical concepts related to probability theory and random processes			
	CO3 Understand the characterization of random processes and their properties			
	CO4 Evaluate response of a system to random signal and noise			
	CO5 Analyze the given probabilistic model of the problem and model noise sources			
	<u>UNIT-I</u>			
	Probability: Axioms- Joint and conditional probability - Bayes' theorem - Bernoulli trials.			
	Random Variable : concept — Distribution function — Density functions — conditional density functions — Expectation — Conditional expected value — Moments — Chebyshev, Markov's, and Chemoffs inequalities — Characteristics and moment generating functions - Transformation of continuous discrete random variable.			
	<u>UNIT -II</u>			
Course	Multiple Random Variables : Vector random variables — Joint distribution / Density functions — Conditional density / Distribution functions - Statistical independence — pdf and cdf for sum of random variables — Central limits theorem - Operations on multiple random variables — Expected value of function of random variables — Joint characteristic function — Joint by Gaussian random variables — Transformations of multiple random variables.			
content	<u>UNIT – III</u>			
	Random Processes : Concept — Stationarity — Independence — Time averages — Ergodicity — Correlation functions — Properties:Gaussian, Poisson, and Markov processes — Power spectral density and its properties — Relation between power spectral density and auto-correlation — Cross power spectral density and its properties — Power spectrum for discrete time processes and sequences — Definition of			

	white and coloured noise.				
	<u>UNIT-IV</u>				
	Linear Systems with Random Inputs: Random signal response of linear system — System evaluation using random noise— Spectral characteristics of system response - Band pass, Band limited, and Narrow band processes — Properties of band limited processes.				
	<u>UNIT-V</u>				
	Modeling of Noise Sources: Classification of noise sources — Resistive (Thermal) noise — Effective noise temperature — Antenna as a noise source — Available power gain — Equivalent networks — Input noise temperature — Noise figure.				
	Optimum Linear Systems: Maximization of (S/N); matched filter for coloured and white noise — Minimization of mean squared error — Wiener filter.				
Text Books and	TEXT BOOKS:				
reference Books:	1. P.Z.Peebles Jr., "Probability Random Variables and Random Signal Principles". Tata McGraw-Hill, 4 edition, 2001.				
	2. A.Papoulis and S.Unnikrishna Pillai, "Probability Random Variables and Stochastic Processes", PHI, 4 edition, 2008				
	3. J.LAunon and V.Chandrasekhar, "Introduction to Probability and Random Processes", McGraw-Hill 1997.				
	REFERENCE:				
	1. D.G. Childer, "Probability and Random Processes", McGraw Hill, 1997.				
	5. GR.Babu and K. Pushpa, "Probability Theory and Stochastic Processes", Premier Publishing House, 2003.				
Е-	1. http://nptel.ac.in/cources				
resources	2. https://iete-elan.ac.in				
	3. https://freevideolectures.com/university/iitm				
	4. https://www.youtube.com/watch?v=r1sLCDA-kNY&list=PL6E780AC0DCCB175C				
	5. https://www.youtube.com/watch?v=ISfCifJK0IU&list=PLB3149CEE48F1460E				

13EC2203-ANALOG COMMUNICATION

Course category	y: Progr	am core	Credits:	4	
Course Type:	Theor	ry	Lecture - Tutorial - Practical:	4 - 0 - 0	
Prerequisite:		vledge in Fourier series and er transforms.	Sessional Evaluation : Univ.Exam Evaluation: Total Marks:	40 60 100	
Course Objectives	2. To de 3. To lil 4. To ci 5. To	o understand the fundamentals of various modulation schemes of AM like Full AM,DSB- C, SSB-SC and VSB. o differentiate between Frequency Modulation and Phase Modulation generation and etection methods. o understand the concepts of Sampling theorem and Pulse Analog modulation Schemes ke PAM, PWM and PPM. o evaluate the effect of noise on different modulation schemes and also to design some rcuits like Pre - emphasis and De - emphasis networks. o realize or implement the circuits required for modulation and demodulation of AM and M Schemes such as Transmitters and receivers etc.			
Course Outcomes	CO1 CO2 CO3 CO4 CO5	Identify the Various Modu Define a modulation and den Calculate the Figure of Merin Get familiarized with the b	essful completion of the course , the students will able to: ne Various Modulation schemes used in communication systems nodulation and demodulation concepts used in Analog communication systems the Figure of Merit for conventional AM,DSB-SC,SSB-SC and VSB schemes iarized with the behavior of AM& FM Modulators and Demodulators the Characteristics of AM radio receivers and Express the importance of FM Broadcast terms		
	UNIT – I ELEMENTS OF ELECTRICAL COMMUNICATION SYSTEMS : Modulation and its Fundamental Physical limitations - Electromagnetic Spectrum and Areas of applications AMPLITUDE MODULATION: Full AM DSB-SC and SSB generation and detection Frequency translation, FDM, Nonlinear distortion and Inter modulation. UNIT -II ANGLE MODULATION : Phase and frequency modulation ,NBFM, WBFM , Transmission bandwidth of FM , Direct and Indirect generation of FM ,Demodulation meth				

Course content	<u>UNIT -III</u>		
	PULSE ANALOG MODULATION: Sampling Theorem - Nyquist rate - Aliasing effect - Sampling of band pass signals -PDM and PPM Generation and detection, Spectra –Synchronization, TDM Asynchronous TDM-Comparison of TDM & FDM.		
	<u>UNIT –IV</u>		
	EFFECT OF NOISE ON LINEAR MODULATION SYSTEMS : Base band systems, DSB-SC, SSB Conventional AM. Carrier phase estimation with a Phase Locked Loop (PLL), Effect of additive noise on phase estimation.		
	EFFECT OF NOISE ON ANGLE MODULATION SYSTEMS : Threshold effect in angle modulation, Pre-emphasis and De-emphasis.Comparison of Angle modulation systems.Effect of transmission losses and noise in analog communication systems.		
	<u>UNIT-V</u>		
	CIRCUIT IMPLEMENTATION OF MODULATION SYSTEMS: Block diagram Study of Radio Broadcast AM and FM transmitters, Super heterodyne receivers, Choice of IF, AGC, Tracking Characteristics of Radio receivers, FM stereo.		
Text Books and	TEXT BOOKS:		
reference Books:	1. "Communication Systems" Simon Haykin, Wiley Eastern.		
	2. "Electronic communication systems" J.Kennedy TMH		
	REFERENCE BOOKS:		
	1. "Communication Systems Engineering" John Proakis, MasoudSaleb.		
	2. "Principles of Communication Systems" Taub and Schilling", McGraw-Hill ISE.		
	3. "Electronic Communications" Dennis Roddy and John Coolen, PHI.		
	4. "Modern Digital and Analog Communication Systems" B.PLathi, Oxford Univ. Press.		
E- resources	1. http://nptel.ac.in/cources		
	2. https:// iete-elan.ac.in		
	3. https://freevideolectures.com/university/iitm		
	4. https://www.youtube.com/watch?v=yssVLZEyNis&list=PL9A4900FA347106F7		
	5. https://www.youtube.com/watch?v=yssVLZEyNis&list=PLFE0C654AD8CF3A99		

13EC2204-PULSE & ANALOG CIRCUITS

(Common for EEE & ECE)

Course category:	Program core		Credits:	4	
Course Type:	Theo	ory	Lecture - Tutorial - Practical:	4 - 0 - 0	
Prerequisite:	Knowledge in active & passive components and mathematical representation of different wave shapes.		Sessional Evaluation : Univ.Exam Evaluation:	40 60	
	Shirp		Total Marks:	100	
Course Objectives	 Analysis and design of wave shaping circuits, multi-vibrators and time base generators. Analysis of LC tuned amplifiers. To learn design of RF amplifiers using transistors. 				
			of the course, the students will able to):	
Course Outcomes	CO1	0	generating desired wave shapes(a control systems and counting and time		
	CO2 Design RC circuits for triggering				
	CO3 Design free running oscillators				
	CO4 Ability to understand Power		Amplifiers		
	CO5 Ability to understand MOS Transistor & Tuned amplifiers				
	<u>UNIT-I</u>				
	WAVE SHAPING CIRCUITS : Types of waveforms, RC low pass and high pass circuits, rise time, tilt, Diode as a switch, Diode clipper and clamper circuits.				
	<u>UNIT-II</u>				
	MULTIVIBRATORS: BJT switch and switching times, Bistable & triggering methods, Schmitt-trigger, Mono-stable and Astable multi-vibrators using BJT.				
			<u>UNIT-III</u>		
	TIME BASE CIRCUITS: RC sweep circuits, constant current Miller and Bootstrap time base generators using BJT's, UJT relaxation oscillators, and sampling gates.				
			<u>UNIT-IV</u>		
	MOS TRANSISTOR: MOS and CMOS Structure, operation (enhancement and depletion mode), I/V Characteristics, Second Order effects - MOS Device capacitance and Small signal model.				
Course content	<u>UNIT-V</u>				
	 POWER AMPLIFIERS: Class-A, Transformer coupled Class-A, Class-B Push-pull, Complementa Class-B push-pullamplifiers. TUNED AMPLIFIERS: Introduction, Q-factor, small signal tuned amplifiers, effect of cascading sing tuned amplifier on bandwidth and stagger tuned amplifiers. 				

	TEXT BOOKS:
	1. Digital design by Morris Mano, Pearson Education Asia
	2. Fundamentals of logic design by Roth & Charles, 2nd Edition, West Publishing Company, 1979
Text Books and reference Books:	3. Ronald J.Tocci, Neal S.Widmer, "Digital systems — Principles and applications".8th edition, Pearson Education Asia, 2001.
	REFERENCES:
	1. Fundamentals of logic circuits by A.Anand Kumar, PHI Learing
	2. Jon M, Yarbrough, "Digital logic — applications and design", Thomson — Brooks India edition.
E- resources	1. http://nptel.ac.in/cources
	2. https:// iete-elan.ac.in
	3. https://freevideolectures.com/university/iitm
	4. https://www.youtube.com/watch?v=aO6tA1z933k
	5. https://www.youtube.com/watch?v=wN6g_q3KPtw
	6. https://www.youtube.com/watch?v=x0BZeUACpK0

13SH2202-ECONOMICS & ACCOUNTANCY

(Common for EEE & ECE)

Course catego	eategory: Program S & H Credits: 4				4			
Course Type:]	Theo	pry	Lecture - Tutorial - Practical:	4 - 0 - 0			
Prerequisite:				Sessional Evaluation :	40			
				Univ.Exam Evaluation:	60			
				Total Marks:	100			
Course Objectives	This course aims to equip the student with a basic understanding of concepts of demand analysis, theory of production and banking, classification of markets, pricing under perfect competition, monopoly, price discrimination, types of business organizations. Describe the concepts and principles in financial accounting journal and ledger, trail balance, final accounts, basic concepts in capital budgeting process.							
			Upon successful completion of	of the course, the students will able to	:			
Course	CO1		It gives complete study on forecasting.	the demand and elasticity of dema	nd and methods of demand			
Outcomes	CO2		It gives detailed structure on t	he pricing strategies				
	CO3		It shows clear picture methods	hows clear picture methods and sources of raising finance.				
	CO4		To know Types of Business C	Organizations				
	CO5		Ability to understand Financi	ial & Management Accounting				
				UNIT – I				
	Ma	argin		and basic concepts of Economics ept of Demand - Law of Demand – E				
				UNIT – II				
	THEORY OF PRODUCTION AND BANKING : Production function – Cobb – Douglas production function and its properties – Law of variable proportions – Law of Returns to Scale – Cost concepts – Revenue curves – Break-Even Analysis. Money-functions of Money-Functions of Commercial Banks-Features of Indian Economy.							
				UNIT – III				
	MARKETS : Classification of markets – Pricing under perfect Competition – Pricing under Monopoly – Price discrimination – Monopolistic Competition.							
	UNIT – IV							
Course content	TVPFS OF BUSINESS OBCANIZATIONS · Sole tradership partnership and Joint Stock Co							
				UNIT – V				
	FINANCIAL & MANAGEMENT ACCOUNTING : Concepts and principles in Finance Accounting, Journal and Ledger, Trial Balance, Final Accounts: Trading Account, Profit and L							

	account and Balance Sheet. Basic concepts in Capital Budgeting process and Methods – Working Capital: operating cycle, factors and sources. TEXT BOOKS:						
	1. Managerial Economics and Financial Analysis:	A R Aryasri					
	2. Management Accounting :	S N Maheswari					
Text Books	3. Economic Analysis :	K. Sankaran					
and reference	REFERENCES:						
Books:	1. Double entry book keeping :	Battlibai					
	2. Cost Accounting:3. Managerial Economics:	Jain and Narang Maheswari and Varshaney					
E- resources	1. https://www.youtube.com/watch?v=kega_QOCvxQ&	<pre>&list=PLRW1FgIW06IpkWmpIl_1qrXIPPzZdc7-</pre>					
	2. https://www.youtube.com/watch?v=51-nXPx3cw4&list=PLbMVogVj5nJTG7ahmEJc4MlcGT0hCr5ik						
	3. https://freevideolectures.com/university/iitm						
	4. https://www.youtube.com/watch?v=51-nXPx3cw4&	list=PLbMVogVj5nJTG7ahmEJc4MlcGT0hCr5ik					

13EC22P2 ELECTRONIC CIRCUITS LAB

Course Cat	egory		Program Core	Credits	2					
Course Typ	e		Practical	Lecture-Tutorial- Practice	0-0-3					
				Sessional Evaluation:	40					
Prerequisit	9		Electronic Devices and Circuits	Semester End Evaluation:	60					
				Total Marks:	100					
	1	Un	derstand the characteristics of y	arious Electronic Circuits like I	Rectifiers					
	-	_	monstrates the uses and applica							
Course	3.			rious electronic circuits like Os	cillators.					
Objectives	4.			amplifiers in terms of Gain Vs						
			w the equivalent circuits of An	-	1 5					
			on Successful Completion of Cou	-						
	CO1	Dete	ermine the typical values for ripple	e factor and % of regulation of rect	tifiers					
G	CO2	Draw the frequency response characteristics of the amplifiers.								
Course Outcomes	CO3	Find out the uses and applications of Oscillators.								
	CO4	Analyze the importance of feedback amplifiers.								
	CO5	Demonstrates how various parameters of the amplifiers can be found from frequency response characteristics.								
			LIST OF	EXPERIMENTS						
	1. Rectifiers without Filters (HWR, FWR, BR).									
	2. Rectifiers with filters (C,LC,CLC).									
	3. R-C Coupled Amplifier.									
	4. FET Amplifier.									
Course Content		5. Colpitts Oscillator.								
	6. Current Series Feedback Amplifier (with & without feedback).									
		7. Determination of f_T of a transistor.								
			8. R-C Phase Shift Oscillato	r.						
			9. Wien bridge Oscillator.							
		10. Darlington pair Amplifier.								

<u> 13EE21P1 – CIRCUITS AND NETWORKS LAB</u>

Course Category:	Professional core	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
	Basic concepts of	Sessional Evaluation:	40
Pre-requisite:	Ohm's Law,	Univ.Exam Evaluation:	60
	Kirchhoff's Laws.	Total Marks:	100
	Basic knowledge of		
	Network Theorems is		
	required.		

Course	Able to	Able to understand analysis and design of electrical circuits			
Objectives:					
	CO1	Students will able to analyse and design electrical circuits using			
		circuit elements.			
	CO2	Students able to understand the concept of different electrical theorems			
Course		practically.			
Course Outcomes:	CO3	Students will able to analyse Two port networks and to understand the concepts of resonance in R-L-C circuits.			
	CO4	Students will able to analyse and calculate mutual inductance of			
		coupled coils.			
	CO5	Students will able to understand power and power factor concepts			
		practically.			
		LIST OF EXPERIMENTS			
	1.	Verification of Kirchhoff's Laws			
		Verification of Superposition Theorem			
		Verification of Reciprocity Theorem			
		Verification of Maximum Power Transfer Theorem			
Course Content:	-	Determination of Two-Port Network Parameters			
	6.	Measurement of Mutual Inductance			
	7.	Locus Diagram of RC Series Circuit			
		Measurement of Power Using Wattmeter			
	9.	Verification of Thevenin's Theorem			
	10	. Resonance In RLC Series Circuit			
	11	. Measurement of Time Constant & Rise Time in a RC Series			
		Circuit			
	12	. Measurement of Power Using			
		(i) 3-Ammeter Method			
		(ii) 3-Voltmeter Method			

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR:NELLORE) SPSR NELLORE DIST III YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMISTER ELECTRONICS AND COMMUNICATIONS ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2015-2016) (For the batch admitted in the academic year 2013-2014)

	Course Title THEORY					Evaluation							Max.
Course Code			Instruct Hours/V		Credits	Sessi Tes		Session Tes		Total Sessional Marks (Max. 40)	End Semeste Examination		Total Marks
			Т	D/P		Duration In Hours	Max Marks	Duration in Hours	Max Marks		Duration in Hours	Max Marks	100
13EE3107	Linear Control Systems**	3	1	-	4	2	40	2	40	0.8(best	3	60	100
13EC3101	Electronic Measurements & Instrumentation	3	1	-	4	2	40	2	40	test) +	3	60	100
13EC3102	Digital Communications	4	-	-	4	2	40	2	40		3	60	100
13EC3103	Analog IC Applications**	4	-	-	4	2	40	2	40	0.2(other test)	3	60	100
13EE3103	Antenna and Wave Propagation	4	-	-	4	2	40	2	40		3	60	100
13CE3107	Environmental Studies**	3	1	-	4	2	40	2	40	-	3	60	100
	PRACTICALS												
13EC31P1	Pulse and Digital Circuits Lab	-	-	3	2		-	-	-	Day to day Evaluation	3	60	100
13SH31P1	Advanced Communication Skills Lab	-	-	3	2		-	-	-	(30) + A test (10)	3	60	100
	TOTAL	21	3	06	28	-	-	-	-	-	-	-	-

** Common to ECE,E

13EE3106-LINEAR CONTROL SYSTEMS

Course Category	Program Core	Credits	4
Course Type	Theory	Lecture-Tutorial- Practice	4-0-0
	Pasias of Signals and Systems	Sessional Evaluation:	40
Prerequisite	Basics of Signals and Systems and Calculus	Semester End Evaluation:	60
		Total Marks:	100

Course Objectives	 To teach the basic concepts of block diagram reduction, time domain analysis solutions to time invariant systems and also deals with the different aspects of stability analysis of systems in frequency domain and time domain To educate the students about types of system and how to control them and Can check the system to be stable, unstable or marginally stable To educate the students to develop & design a system which may be useful for industry and public life. To show how to use control theory to analyze and design advanced control systems for industrial problems such as trajectory tracking, disturbance rejection, and optimization 						
	Upon Successful Completion of						
	CO1 Understand various types of contr	ol systems and methods to obtain transfer function					
Course	CO2 Develop mathematical models of	physical systems					
Outcomes	CO3 Evaluate the stability of linear sys	tems using different techniques					
	CO4 Evaluate the response of linear sys	Evaluate the response of linear systems using time domain and frequency techniques					
	CO5 Design different types of compens	sators for linear systems					
Course Content	feedback, Feedback and its effects- Transf flow graphs - Mason's gain formula. Mathematical modeling of physical sys	<u>UNIT –I</u> s: Open loop and closed loop control systems- Types of fer functions - block diagrams and their reduction- signal <u>UNIT-II</u> stems: Mathematical modeling and transfer functions of hical elements DC servo motors- two-phase A.C. servo					
	<u>UNIT-III</u> Time domain analysis: Introduction, Standard test signals, Time response specifications – steady state error constants.						
	Stability of control systems: Routh Hurwitz criterion- Root Locus – rules for the construction of root loci- Introduction to proportional, derivative and integral controllers.						
		<u>UNIT-IV</u>					
	Frequency domain Analysis: introduction	on- Frequency domain specifications- Polar plots – Bode					

Plots- Nyquist stability criterion
UNIT-V
Design of compensators: Introduction - Need for compensators. Lag and lead compensators design in frequency domain.
Text books 1.Control system Engineering I.J.Nagrath and M.Gopal, Wiley Eastern Ltd. 2.Control System Engineering – A. Nagoor kani 3.Control System Engineering – A. Anand kumar Reference Books:
 Automatic Control systems- by B.C.Kuo, PHI. Discrete Time Control Systems by K.Ogata, Pearson education. Control system Engineering by NISE, Wiley, 2000.
1. http://www.nptel.ac.in. 2. http://www.ebookee.com/digitalcommunicationsystems.

13EC3101-ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

Course Category	Program Core	Credits	4
Course Type	Theory	Lecture-Tutorial- Practice	4-0-0
	Electronic Devices and	Sessional Evaluation:	40
Prerequisite	Characteristics of Systems	Semester End Evaluation:	60
		Total Marks:	100

Course Objectives	 Introduce students to the use of various standards and units of measurements, electronic instruments, their construction, applications, and principles of operation. Understand the internal structure of analog and digital instruments that are used in measuring parameters and also difference between analog meters and digital meters and their performance characteristics. Provide students with opportunities to develop basic skills in the design of electronic equipment. 					
	Upon Successful Completion of Course, Student will be able to					
	CO1 Understand various types of control systems and methods to obtain transfer function					
Course	CO2 Develop mathematical models of physical systems					
Outcomes	CO3 Evaluate the stability of linear systems using different techniques					
	CO4 Evaluate the response of linear systems using time domain and frequency techniques					
	CO5 Design different types of compensators for linear systems					
	UNIT I Performance characteristics of instruments : Static characteristics, Accuracy, Resolution, Precision, Expected value, Error, Sensitivity.Errors in Measurement, Dynamic Characteristics-speed of response, Fidelity, Lag and Dynamic error. DC Voltmeters- DC Ammeters Multi range, Range extension, AC voltmeters- multi range, range extension, Ohmmeters - series type, shunt type, Multimeter for Voltage, Current and resistance measurements.					
Course Content	<u>UNIT II</u>					
	Fixed and variable signal Generators : AF oscillators, Standard and AF sine and square wave signal generators, Function Generators, Square pulse, Random noise, sweep, Arbitrary waveform. Wave Analyzers, Harmonic Distortion Analyzers, Spectrum Analyzer.					
	<u>UNIT III</u>					
	Oscilloscopes : CRT features, vertical amplifiers, horizontal deflection system, sweep, trigger pulse, delay line, sync selector circuits, triggered sweep CRO, Dual beam CRO, Measurement of amplitude and frequency, Dual trace oscilloscope, sampling oscilloscope, storage oscilloscope,					

	digital readout oscilloscope, digital storage oscilloscope, Lissajous method of frequency		
	measurement, standard specifications of CRO, Frequency counter, Time and Period measurement.		
	<u>UNIT IV</u>		
	Wheat stone bridge : AC Bridges, Measurement of inductance- Maxwell's bridge, Measurement of capacitance - Schering Bridge. Wien Bridge, Errors and precautions in using bridges. Q-meter.		
	<u>UNIT V</u>		
	Transducers : Active & Passive transducers : Resistance, Capacitance, Inductance; Strain gauges, LVDT, Piezo Electric transducers, Resistance Thermometers, Thermocouples, Thermistors, Sensistors. Measurement of physical parameters force, pressure, velocity, humidity, moisture, speed, proximity and displacement. Data acquisition systems.		
	Learning Resources		
	Text books		
	1.Modern Electronic Instrumentation and Measurement Techniques – A.D. Helfrick and W.D. Cooper, PHI, 5th Edition, 2002.		
Text Books and Reference	2.Electronic instrumentation, second edition - H.S.Kalsi, Tata McGraw Hill, 2004		
Books	Reference Books:		
	1. Electronic Instrumentation & Measurements - David A. Bell, PHI, 2 nd Edition, 2003.		
	2. Electronic Test Instruments, Analog and Digital Measurements - Robert A.Witte, Pearson Education, 2 nd Ed., 2004.		
E-Resources	1. http://www.nptel.ac.in.		
and Other Digital			
Material	2. http://www.ebookee.com/electronicmeasurementand instrumentation		

13EC3102-DIGITAL COMMUNICATIONS

Course Category	Program Core	Credits	4
Course Type	Theory	Lecture-Tutorial- Practice	4-0-0
	Basics of Probability and	Sessional Evaluation:	40
Prerequisite	Analog Communication	Semester End Evaluation:	60
		Total Marks:	100

		Understand basic components of digital communication systems.		
	2.			
	3.			
C	4.			
Course	5. Understand transmission and detection of digital carrier modulation schemes.			
Objectives	6.			
	_	interferences		
		Design of band limited signals for no Inter Symbol Interference (ISI) and controlled ISI.		
		Understand various M-array signaling schemes.		
	9.	Learn techniques for encoding and decoding of different digital codes.		
		Upon Successful Completion of Course, Student will be able to		
	CO1	Select the blocks in design of digital communication system		
Course	CO2	Acquire knowledge about, sampling and quantization.		
Outcomes	CO3	Identify and describe different techniques in modern digital communications		
	CO4	Gain knowledge about different M-array modulation techniques		
	CO5	Acquire knowledge about of inter symbol interference (ISI).		
		<u>UNIT-I</u>		
	Syster Capac	al Communication System & Information Theory: Model Of A Digital Communication m – Unit Of Information – Entropy – Mutual Information – Channel Models And Channel hity – Shannon's Theorem – Shannon-Hartley Theorem –Bandwidth – S/N Trade-Off – Source ling Of Discrete Memory Less Source – Shannon-Fanon coding – Huffman Coding – Coding ency.		
Course Content		<u>UNIT-II</u>		
	Source Coding for Analog Signals: Review of Sampling Theorem – PCM System –Quantization Noise – Companding – B.W requirements of PCM – Differential PCM –Delta Modulation – Adaptive delta Modulation – Noise in PCM & Delta Modulation.			
		<u>UNIT-III</u>		
		Band Data Transmission: Characterization Of Band Limited Channels – Design of band d signals for no Inter Symbol Interference (ISI) – The Nyquist criterion –Design of band		

	limited signals with controlled ISI – Partial response signals –Transmitting & Receiving Filters for Optimum Performance– M-array signaling scheme – Binary Vs M-array – Equalization schemes – Eye diagrams.
	<u>UNIT-IV</u>
	Digital Carrier Modulation Schemes: ASK, FSK(coherent & Non coherent) – PSK –DPSK – Baseband signal receiver – Optimum & Matched Filters – Correlator – Comparison of Digital Modulation Schemes – Bandwidth requirement – Power requirement – Immunity to channel impairments – Equipment complexity – M-array signaling schemes – synchronization methods.
	<u>UNIT-V</u>
	Error Control Coding : Linear Block Codes – Matrix Description – Hamming Codes – Decoding – Binary Cyclic Codes – Algebraic Structure – Encoding Using Shift Register – Syndrome Calculation – BCH Codes, Burst & Random Error Correcting Codes – Convolution Codes – Tree Diagram –State Diagram –Trellis Diagram– Encoders and Decoding Algorithms.
	TEXT BOOKS:
	 Digital Communications – Simon Haykin 2nd Edition, Tata McGraw-Hill Publishers. Analog & Digital Communication Systems –Sam Shanmugam,K, John Wiley & Sons REFERENCE:
	 Principles of Communication System – Taub, H & Schilling D.L, Mc Graw Hill. Communication Systems, Analog & Digital –R.P. Singh & S.D.Sapre,TMH Publishers Digital Communications –Proakis, J.G- Mc Graw Hill.
	Learning Resources
	Text books
Torrt Dooleg	1. Digital Communications – Simon Haykin 2 nd Edition, Tata McGraw-Hill Publishers.
Text Books and	2.Analog & Digital Communication Systems –Sam Shanmugam,K, John Wiley & Sons
Reference Books	Reference Books:
	1. Principles of Communication System – Taub, H & Schilling D.L, Mc Graw Hill.
	2.Communication Systems, Analog & Digital –R.P. Singh & S.D.Sapre, TMH Publishers
	3. Digital Communications – Proakis, J.G- Mc Graw Hill.
E- Resources and Other Digital Material	1.http://www.nptel.ac.in. 2.http://www.ebookee.com/digitalcommunicationsystems.

13 EC 3103 - ANALOG IC APPLICATIONS

Course Category	Program Core	Credits	4
Course Type	Theory	Lecture-Tutorial- Practice	4-0-0
		Sessional Evaluation:	40
Prerequisite	Circuit Theory	Semester End Evaluation:	60
		Total Marks:	100

1. To introduce the basic building blocks of Op amp & its characteristics.			
2.	To teach linear and non-linear applications of operational amplifiers.		
3.	To introduce the theory and applications of 555 timer and PLL.		
4.	Design of various filters using op amp.		
5.	To teach theory of ADC's and DAC's.		
	Upon Successful Completion of Course, Student will be able to		
CO1	Learn the various applications of the Integrated Circuits.		
CO2	Know the importance of Operational Amplifier.		
CO3	Get the knowledge of 555 timer and PLL.		
CO4	Acquiring knowledge of filters and regulators.		
CO5	Getting knowledge on interfacing ADC's and DAC's.		
Differe Metho Inverti 741.	<u>UNIT – I</u> tional Amplifier : Introduction to ICs, Op-Amp Ideal Characteristics, Internal Circuit, ential Amplifier and its Transfer Characteristics, Derivation of CMRR & Improvement ds of Differential Amplifier Characteristics, DC and AC Characteristics of Op-Amp, ing and Non-Inverting Modes for Operation, Voltage Follower and Specifications of IC <u>UNIT – II</u> mp Applications: Summer, Integrator, Differentiator, Analog Computation,		
Instrumentation Amplifier, V to I and I to V Converters, Precision Rectifiers, Sample and Hold Circuit.			
and M	arators and Waveform Generators : Comparator, Regenerative Comparator, Astable onostable Multivibrators Using Op-Amp, Triangular Wave Generator, Sine Wave ators Using Op-Amp (RC Phase Shift).		
	2. 3. 4. 5. CO1 CO2 CO3 CO4 CO5 Opera Differd Metho Inverti 741. Op-An Instrum Circui Comp and M		

	<u>UNIT – III</u>
	IC Timers: 555 Timer, Astable and Monostable Modes.
	Phase Locked Loops : Basic Principles, Lock and Capture Range, Voltage Control Oscillator (IC-566), PLL (IC 565) and PLL Applications.
	<u>UNIT – IV</u>
	Active Filters: Low Pass, High Pass and Band Pass Filters, State Variable Filters.
	Voltage Regulators: Series Op-Amp Regulator, IC Voltage Regulators, IC 723 Regulator, Switching Regulators.
	$\underline{\mathbf{UNIT}} - \mathbf{V}$
	Electronic Data Converters: Introduction, DACs-Weighted Resistor, R-2R and Inverted R-2R.
	Type of ADCs: Parallel Comparator Type, Counter Type, Successive Approximation and Dual Slope ADCs, Specifications of DAC and ADC.
	Learning Resources
	Text books
	 D. Roy Choudary, Shail B.Jain, "Linear Integrated Circuits", New Age international Publishers, 2003.
Text Books and Reference	2. Design of Analog Integrated Circuits by Sergio Franco.
Books	Reference Books:
	 J. Michel Jacob, "Applications and Design with Analog Integrated Circuits", PHI, EEE, 1997.
	 Ramkant A. Gayakwad, "Op-Amps and Linear Integrated Circuits", LPE, 4th Edition, Pearson Education.
E-Resources	1.http://www.nptel.ac.in
and Other Digital Material	2. http://www.ebookee.com/linearintegratedcircuits.

13EC3104-ANTENNAS AND WAVE PROPAGATION

Course Category	Program Core	Credits	4
Course Type	Theory	Lecture-Tutorial- Practice	4-0-0
	Vector Calculus and Basics of	Sessional Evaluation:	40
Prerequisite	Electromagnetic Waves and Wave Propagation	Semester End Evaluation:	60
	Topuguion	Total Marks:	100

	1. Study propagation of signals, calculate various line parameters, and impedance mat Techniques.	ching	
Course Objectives	2. Learn antenna basics, antenna parameters and calculation of radiation resistances of various antennas.		
	3. Study antenna arrays and draw its 3-D patterns.		
	4. Understand the basic working principle of VHF and UHF antennas		
	5. Understand different kinds of Wave Propagation.		
	Upon Successful Completion of Course, Student will be able to		
	CO1 Understand the fundamentals of Transmission Line Theory and Impedance Matching High Frequency Lines.	ing in	
Course Outcomes	CO2 Learn antenna basics, Antenna Parameters and calculation of Radiation Resistance	s.	
	CO3 Describe various Antennas, Arrays And Draw Radiation Patterns .		
	CO4 Explain the types of Antennas to be employed in VHF and UHF.		
	CO5 Classify Radio Wave Propagation in the Atmosphere.		
	UNIT I		
Course Content	Transmission Lines: Primary and Secondary Constants of the Line, Transmission Line Equations, Propagation Constant, Characteristic Impedance, Distortion less Line, Input Impedance of Open and Short Circuited Lines, Standing Waves, Reflection Coefficient, Smith Chart, Impedance Matching Using Smith Chart(Single Stub Only).		
	UNIT II		
	Radiation Fundamentals: Definition of antenna, Retarded Potentials, Relation between Potential and Time Varying Fields, Far Field Approximation, Radiation from a current Element, Half Wave Dipole and Monopole Antennas.		
	Antenna Parameters: Radiation Pattern, Radiation Intensity, Directivity, Gain, HI	PBW,	

	Effective Aperture, Relation between Directivity and Maximum Effective Aperture.
	UNIT III
	Linear Wire Antennas: Current Distribution on Thin Linear Wire Antennas, Array of Two Point Sources, Principle of Pattern Multiplication, Uniform Linear Arrays: Broad Side and Endfire Array and Binomial Arrays.
	Travelling Wave Antennas: Long Wire and Rhombic Antennas, Yagi-Uda Antenna, Folded Dipole Antennas (Without Analysis)
	UNIT IV
	Surface and Space Wave Propagation: Friis's Transmission Formulae, Salient Features of Somerfield Theory, Ground Wave Field Strength Calculation, Antennas located over Flat Earth, Effect of Curvature of Earth, Refraction of Radio Waves in Troposphere, Effective Radius of Earth, Radio Horizon and Maximum Radio Range.
	UNIT V
	Sky Wave Propagation: Structure of Ionosphere, Mechanism of Wave Refraction in Ionosphere, Critical Frequency, MUF, Virtual Height, Skip Distance, Effect of Earth's Magnetic Field, Faraday Rotation.
	Learning Resources
	Text books
	1. Antennas by John D Krauss – ISE.
Text Books	2. Antennas and Wave Propagation by K.D.Prasad -Khanna Publication.
and Reference	
Books	Reference Books:
	1. Tansmission Lines and Networks by Umesh Sinha-Sathya Prakash Publication.
	2. Electromagnetic Waves and Radiating Systems by Jordan AND Balmain-PHI.
E-Resources	1.http://www.nptel.ac.in.
and Other Digital	2.http://www.ebookee.com/antennaandwavepropagation.
Material	

<u>13CE3107 – ENVIRONMENTAL STUDIES</u> (Common to All branches)

Course Category:	Humanities	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practical:	4-0-0
	Engineering Physics and	Sessional Evaluation:	40
Pre-requisite:	Engineering Chemistry	Univ.Exam Evaluation:	60
		Total Marks:	100
Course Objectives:	 To give an idea of scope and importance of environmental studies and environmental components. To describe and discuss the basic aspects associated with the structure and function of ecosystems and bio-diversity. To understand the various natural resources environmental acts. To analyze causes, effects and control of environmental pollution. To apply apply the knowledge of environmental studies for certain case studies in India. 		
		tures of ecosystem and bio-diversity.	
-	0	ent of major natural resources.	
_	CO3 Understand the causes, eff	fects and remedial measures of environ	mental pollution.
	CO4 Able to understand eff	fectives of elements on environme	ent and disaster
Course	management		
Outcomes:		ronmental acts and must be able to app	bly the knowledge of
	environmental studies to c	ertain case studies.	
Course Content:	environmental studies to certain case studies. UNIT-1 Introduction: Definition, Scope and Importance of Environmental studies, Environmental Components. Ecosystem: Introduction, types, characteristics and functions of Ecosystems Bio-diversity and its conservation- Value of bio-diversity consumptive and productive use, social, ethical, aesthetic and option values. Threats to biodiversity-conservation of biodiversity. UNIT-11 Environmental and natural resources management: a) Land resources and its importance, Land degradation, Soil erosion and desertification, Effects of modern agriculture, fertilizer and pesticide problems. b) Forest Resources: Use and over-exploitation-Mining and dams-their effects on forest and tribal people. c) Water Resources: Use and over-utilization of surface and ground water, Floods and droughts, Water logging and salinity, Conflicts over water sharing, Rain water harvesting, clouds seeding and watershed management. d) Energy resources Energy needs: Renewable and non-renewable energy needs use of alternate energy sources, Impact of energy use of environment. UNIT-111 Environmental Pollution, Water Pollution, Soil pollution, Marine Pollution, Noise pollution. Solid waste management: Composting, Vermiculture- Urban and industrial wastes, recycling and reuse, Nature of Thermal pollution and nuclear hazards, Global warming, Acid rain, Ozone depletion. UNIT-1Y Environmental Problems in India: Drinking water, Sanitation and public health. Effects of urbanization, Transportation, Industrialization on the quality of environment, G		

	document and environmental assets. Study of local environment-common plants, insects, birds. Study of simple ecosystemspond, visit to industries, water treatment plants, effluent treatment plants.
Text Books & Reference Books:	Text Books:1. "Environmental science" by Anubha Kaushik and C.P.Kaushik.2. "Environmental science and Engineering" by P.Anandan andReference Books:1. "Introduction to Environmental science" by Y.Anjaneyulu.2. "Environmental studies" by Dr B.S.Chauhan.3. "Environmental science" by M.Chandra sekhar
E-Resources:	http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm

13EC31P1 PULSE AND DIGITAL CIRCUITS LABORATORY

Course Category	Program Core	Credits	2
Course Type	Practical	Lecture-Tutorial- Practice	0-0-3
	Electronic Devices and	Sessional Evaluation:	40
Prerequisite	Characteristics of Systems	Semester End Evaluation:	60
		Total Marks:	100

Course Objectives	This course aims to equip the student with a basic understanding of concepts of electrical machines and capable of operating them to determine the various characteristics and test data.
	Upon Successful Completion of Course, Student will be able to
	CO1 Understand Function of Logic gates and can Implement Logic Circuits using gates.
Course	CO2 Implement combinational logic circuits.
Outcomes	CO3 Elucidate differences between Synchronous and Asynchronous Circuits.
	CO4 Demonstrate linear and non-linear wave Shopping.
	CO5 Design Multivibrators.
	LIST OF EXPERIMENTS
	 (a) Logic Circuits and Logic Gates. (b) Realization of Logic Gates using Nand and Nor Gates.
	2. Full Adder and Full Subtractor.
	3. Decoder
	4. Divide by N-Ripple Counter.
Course Content	5. Multiplexer
	6. Divide by N-Synchronous Counter.
	7. RC Differentiator and RC Integrator
	8. Diode Clippers and Clampers.
	9. Astable Multivibrator.
	10. Schmitt Trigger.
	Text Books:
	1.Pulse and Digital Circuits by Taub and Schelling, Mc-Grahill Publications.
	2.Switching Theory and Logic Design by Anand Kumar, PHI Publications

13SH31P1 – ADVANCED COMMUNICATION SKILLS LABORATORY

Course Category:	Humanities	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practical:	0-0-3
	1.Knowledge of issues around the	Sessional Evaluation:	40
Pre-requisite:	world	Univ.Exam Evaluation:	60
	2. Ability to use language in	Total Marks:	100
	professional contexts		
	3.Understand the importance of		
	maintenance of good		
	relationships		

Course Objectives:	during the 2. To dev with idea 3. Unders 4. To equ like GRE 5. To sh	 To understand the strategies of the interviews to facilitate better responses during the placements To develop inter personal skills and be an effective goal oriented team player with idealistic, practical and moral values Understand what constitutes proper etiquette in a professional environment. To equip with a wide range of vocabulary technically and perform better in tests like GRE, TOEFL etc To sharpen communication skills towards writing a persuasive resume and effective job application letters 					
Course	со2 Т	Fo understand the strategies of the interviews to facilitate better esponses during the 'Placement'. Fo develop inter personal skills and be an effective goal oriented team player with idealistic, practical and moral values.					
Outcomes:	CO3 Ū	Understand what constitutes proper etiquette in a professional environment.					
	b	To equip with a wide range of vocabulary technically and perform better in tests like GRE, TOEFL etc.					
		To sharpen communication skills towards writing a persuasive resume and effective job application letters.					
Course Content:	3	 LIST OF EXPERIMENTS Vocabulary Building – Synonyms and Antonyms, Word roots, One-word Substitutes, Prefixes and Suffixes, Study of word origin, Analogy, Idioms and Phrases. Group Discussion – Dynamics of Group Discussion, Intervention, Summarizing, Modulation of voice, Body Language, Relevance, Fluency and Coherence. Intrapersonal & Interpersonal Relationship Skills – Intrapersonal & Interpersonal Relationship Skills – Intrapersonal & Interpersonal Relationship Skills – To be an Effective Team Player Resume' Writing – Structure and Presentation, Planning, Defining the career Objective, Projecting ones strengths and Skill-Sets, Summary, Formats and Styles, Letter-Writing. Interview Skills – Concept and Process, Pre-Interview Planning, Opening Strategies, Answering Strategies, Interview through Tele and Video-Conferencing. Corporate Etiquettes- Dressing Etiquettes- Dining Etiquettes- Nonverbal Communication- Proximity of Place. 					

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR:NELLORE) SPSR NELLORE DIST III YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMISTER ELECTRONICS AND COMMUNICATIONS ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2015-2016)

(For the batch admitted in the academic year 2013-2014)

	S.No Course Course Title										Evaluation			
S.No			Instruction C Hours/Week		Credits Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	End Sen Examin		Maximum Total Marks		
		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	13EC3201	MicroProcessors and Interfacing*#	3	1	-	4	2	40	2	40		3	60	100
2	13EC3202	MicroWave Techniques	4	-	-	4	2	40	2	40		3	60	100
3	13EC3203	Optical Communications	4	-	-	4	2	40	2	40	0.8*Best of two+0.2*least of	3	60	100
4	13EC3204	Digital Design	3	1	-	4	2	40	2	40	two	3	60	100
5	13EC3205	Computer Organization**	3	1	-	4	2	40	2	40		3	60	100
6		Elective - I	4	-	-	4	2	40	2	40		3	60	100
	PRACTICALS													
7	13EC32P1	Analog & Digital Communications Lab	-	-	3	2		-	-	-	Day to Day Evaluation and a	3	60	100
8	13EE32P2	IC Applications Lab	-	-	3	2		-	-	-	test (40 Marks)	3	60	100
		TOTAL	21	03	06	28	-	-	-	-		-	480	800

** Common to ECE,EEE, *# Common to ECE,EEE & CSE

<u>13EC3201 – MICROPROCESSOR AND INTERFACING</u> (Common to EEE, ECE and CSE)

Course Category:	Professional core	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practical:	4-0-0
	Logic circuit design ,A/D & D/A	Sessional Evaluation:	40
Pre-requisite:	converters, fundamental	Univ.Exam Evaluation:	60
	programming skills	Total Marks:	100

	1 **					
		derstand the history and need of different types of microprocessor. rn and understand the internal architecture details, pin configuration, and				
		r timing diagrams of 8085µp.				
	3. Dev	elop various projects and to know complete architectural, programming,				
		interfacing details of 8085 microprocessor.				
	4. Un	derstand the internal architecture details, pin configuration, and their				
		ing diagrams of 8086μp.				
		erstand various Interrupts and their uses using 8086 Microprocessor.				
Course		velop Programs in assembly level language of the 8086 family of				
Objectives:	-	processors.				
		arn techniques of interfacing between the processors and peripheral				
		ices so that they themselves can design and develop a complete proprocessor based system.				
		rn to interface 8257/8253/8259/8251 peripheral chips and I/O devices				
	with 8					
		sign different real-time projects and they will know use of timers,				
		pts and serial communication techniques.				
	10. De	velop programs to control different hardware's using 8086µp.				
	CO1	Understand the evaluation of different types of microprocessors.				
	CO2	Write efficient programs in Assembly level language of the 8085				
		family of µp's with the help of instruction set easily.				
	CO3	Gain the knowledge on internal architecture of 8086µp (Execution				
		unit, Bus interfacing unit, queue, and 8086 memory				
Course		address).Programming structure and able to write programs in assembly language of the 8086 family of microprocessors.				
Outcomes:	CO4	Know the techniques of interfacing between the processors and				
outcomes	04	peripheral devices so that they themselves can design and develop				
		a complete microprocessor based systems real time projects.				
	CO5	Understand the inter connections of different co-processors, hardware				
		knowledge of programmable devices like				
		8257/8253/8259/8251/8255 with 8086µp and developing hardware				
		applications involving microprocessors.				
		UNIT-I				
		ODUCTION TO MICROPROCESSORS: Evaluation of				
	-	processors, Types of microprocessors, Architecture of 8085				
	-	processor, pin configuration, Instruction Cycle, Timing Diagrams, Stack broutines.				
		UNIT-II				
	INSTI	RUCTION SET OF 8085 MICROPROCESSOR:Addressing modes,				
		bly Language Programs(8085) for addition, subtraction, multiplication,				
		division etc., Interrupts of 8085, Memory and I/O interfacing of 8085				
		processor.				
Course Content:		UNIT-III				
		tecture of 8086 microprocessor: Instruction set, Addressing modes,				
	Interru	pt system. Minimum mode and Maximum mode operations of 8086 and				

	its timing diagrams, Assembler directives, Assembly language programs					
	(8086), Stages of software development.					
	UNIT- IV					
	Data transfer schemes: -synchronous, Asynchronous, Interrupt driven and DMA type schemes, Programmable interrupt controller (8259) and its interfacing, Programmable DMA controller (8257) and its interfacing, Programmable Interval Timer (8253) and its interfacing, Programmable communication Interface(8251 USART) and its interfacing. UNIT-V					
	Memory interfacing to 8086: -Interfacing various types of RAM and ROM chips, PPI (8255) and its interfacing, ADC and DAC Interfacing, Waveform generation, Traffic light controller, Stepper motor control, temperature					
	measurement and control.					
Text Books & Reference Books:	 Text Books 1.Ram . B," Fundamentals of Microprocessors and Micro controllers", DhanpatRai publications. 2.Douglas V. Hall, "Microprocessors and interfacing: Programming and hard ware", TMH, 2nd edition. Reference Books: 1.A.K. Ray and K.M. Bhurchandi, "Advanced Microprocessors and Peripherals", TMH. 					
	2. "Microprocessor Architecture, Programming, and Applications with the 8085" by <u>Ramesh S. Gaonkar</u> ", Prentice Hall PTR.					
E-Resources:	http://nptel.ac.in/courses http://iete-elan.ac.in http://freevideolectures.com/university/iitm					

13EC3202-MICROWAVE TECHNIQUES

Course Category	Program Core	credits	4
Course Type	Theory	Lecture-Tutorial-Practice	4-0-0
Prerequisites	EM Wave Propagation Characteristics &	Sessional Evaluation	40
	Fundamental of	Semester End Evaluation	60
	Transmission Lines & Antennas	Total Marks	100

Objectives		o understand the operation of Klystron amplifier, Reflex Klystron oscillator, avelling Wave Tube amplifier and Magnetron oscillators.							
	dio	o study the operation of different microwave semiconductor devices like Tunnel ode, Gunn diode, IMPATT diode, Schottkey Barrier diode, PIN diode and varactor odes.							
	 To understand different microwave components like Resonators, attenuators, The Directional couplers, Isolators and S-parameters of networks. 								
		o study the measurement of frequency, VSWR, impedance, S-parameter and 'Q' of cavity.							
		5. To study Hybrid MICs, strip lines, micro strip lines, parabolic reflector antenna, Horn and Lens antennas.							
		Upon Successful completion of course, student will be able to							
Course	Co1	Demonstrate the use of different Klystrons, magnetron devices.							
outcomes	Co2	Describe the use of active and passive microwave devices							
	Co3	Analyze different UHF components with the help of scattering parameter and analyze the different power distribution Tees							
	Co4	Describe the microwave bench, different blocks and their features and methods to measure the microwave power, attenuation, frequency, VSWR and cavity Q, Impedance							
	Co5	Study types of strip lines and MICs fabrication and operation of antennas at Microwave frequency							

	<u>UNIT I</u>
	MICRO WAVE TUBES: Klystron Amplifier, Reflex Klystron Oscillator, Travelling Wave Tube Amplifier and Magnetron Oscillator.
Course Content	. <u>UNIT II</u>
	MICROWAVE SEMOCONDUCTOR DEVICES: Tunnel Diode, Gunn Diode, IMPATT Diode, PIN Diode, SchottKey Barrier Diode, Varactor Diode and Parametric Amplifier, MASER.
	<u>UNIT III</u>
	MICROWAVE COMPONENTS: Waveguides, Cavity Resonators, Attenuators, TEEs, Bends, Corners, Windows, Phase Shifters, Directional Couplers, Matching elements, Isolators, Circulators, S-Parameters of Networks.
	<u>UNIT IV</u>
	MICROWAVE MEASUREMENTS: Measurement of Frequency, Power, VSWR, Impedance, Reflection Coefficient, Attenuation Constant and Dielectric Constant, S- parameters, 'Q'- of a Cavity.
	<u>UNIT V</u>
	MICs AND ANTENNAS: Advantages of MICs, Hybrid MICs, Strip Lines, and Microstrip Lines, Monolithic MICs, Parabolic Reflector Antenna, Passive Reflector Antenna, Horn and Lens Antennas.

	TEXT BOOKS
Text Books & References	 Samuel Y Liao, "Microwave Devices and Circuits", Prentice Hall,1999. M. Kulkarni, "Microwave and Radar Engineering", Umesh Publications,1998. Annapurna Das and Sisir K Das, "Microwave Engineering", TMH, 2000. REFERENCE BOOKS D C Dube, "Microwave Devices and Applications", Narosa Publications, 2011. David M Pozar, "Microwave Engineering", IE,1997. Robert E Collin, "Foundations for Microwave Engineering", John Wiley and Sons,2007
E-Resources & other digital material	 <u>http://nptel.ac.in/syllabus/117105029/</u> https://www.youtube.com/user/nptelhrd

13EC3203 - OPTICAL COMMUNICATIONS

Course Category	Program Core	credits	4
Course Type	Theory	Lecture-Tutorial- Practice	4-0-0
Prerequisites	EM wave and Propagation	Sessional Evaluation	40
	Characteristics, Basics of Electronic Devices	Semester End Evaluation	60
		Total Marks	100

Objectives	sc	p provide an overview of the optical materials, dispersion, diffraction, absorption, attering, fibre losses, fibre modes and configurations, fibre types and rays and fibre aterials.		
		Provide an overview on LED, lasers and their excitations and noises of light purces and coupling to single mode fibres, splicing and connectors.		
	3. To	o understand the operating principles of optical detectors and Receivers.		
	4. To analyse the behaviour of the optical amplifiers, semiconductor and doped of amplifiers, and optical networks.			
		provide an overview of telephony telemetry, video distribution, military pplications, Passive and active sensing.		
		Upon Successful completion of course, student will be able to		
Course outcomes	Co1	Acquire knowledge about optical materials, fibre characteristics, classification		
outcomes	Co2	Understand the fibre modes and configurations and fibre materials		
	Co3	Acquire knowledge of LED, laser excitations, fibre noises, coupling of fibres		
	Co4	Analyse optical detectors and receivers' performance and calculation		
	Co5	Understand the optical amplifiers and basic noise networks		

	<u>UNIT-I</u>
	INTRODUCTION AND OPTICAL MATERIALS : Introduction, Fiber characteristics and classification, Dispersion, Diffraction, Absorption and scattering Fiber losses, Optical fiber modes and configurations, Fiber types and rays, and modes and fiber materials.
Course Content	<u>UNIT-II</u>
	OPTICAL SOURCES AND COMPONENTS : Electro luminescence, LED's, Laser's and their excitation light source linearity, Model partition and reflection, fiber noise- to-fiber joints. LED coupling to single -mode fibers. Fiber splicing and fiber connectors.
	<u>UNIT-III</u>
	OPTICAL DETECTORS AND RECEIVERS : Types of photo detectors, Photo diodes and its noise, PIN photo diodes, Photo transistors, Photo Darlington receiver transistor operation, receiver performance and calculation.
	<u>UNIT-IV</u>
	OPTICAL AMPLIFIERS AND NETWORKS : Types of optical amplifiers sem conductor optical amplifiers, fiber amplifiers and basic noise networks, Broadcast-and-select WDM networks.
	<u>UNIT-V</u>
	OPTICAL COMMUNICATIONS APPLICATIONS : components of optical communication systems, transmitter, transmission channel receiver, Telephony Telemetry, video distribution military applications, passive and active sensing.

Text Books & Reference Books	Learning Resources Text Books Optical communications_Gred keiser 3rd edition, Mc Graw-Hill-2000. Optical fiber communication-John M Senior Reference Books
	 Electronic communications systems-Williams Schweber, 3rd edition, prentice hall, 1999. Optical fiber communication systems- C.P Saud bance, john Wiley 1980. Modern electronic communication-G.M.Miller 6th edition prentice hall 1999.
E-Resources & other digital material	 http://nptel.ac.in/courses/117103063/1 https://www.youtube.com/user/nptelhrd

13EC3204-DIGITAL DESIGN

Course Category	Program Core	credits	4
Course Type	Theory	Lecture-Tutorial- Practice	4-0-0
Prerequisites	Electronic Devices, Fundamentals of	Sessional Evaluation	40
	Switching Theory & Programming	Semester End Evaluation	60
	Knowledge	Total Marks	100

Objectives	2. Im	 Explain the differential and current mirror MOS circuits. Implementing logic gates and Boolean expressions using different logic families. 			
	wa 4. Cro 5. De	cplain how digital circuit of large complexity can be built in a methodological ay, starting from Boolean logic and applying a set of rigorous techniques. eate minimal realizations of single and multiple output Boolean functions. esign and analyze combinational and sequential circuits using VHDL			
		Upon Successful completion of course, students will be able to			
Course outcomes	Co1	Design and explain the various MOS amplifiers			
outcomes	Co2	Understand the process of integration and characteristics of different logic families			
	Co3	Demonstrate knowledge of VHDL language			
	Co4	Design and analyze combinational and sequential circuits for various practical problems using basic gates and flip flops			
	Co5	Write a VHDL code for digital circuits			
		<u>UNIT – I</u>			
		AMPLIFIERS: Common source amplifier with resistive load, Common Drain fier. Differential amplifier, transfer characteristics and derivation of CMRR.			
		ent Mirrors: Basic Current Mirrors, cascode current mirror and active current rs without signal analysis.			

Course Content	<u>UNIT – II</u>
Content	DIGITAL INTEGRATED CIRCUITS: Evaluation of ICs, Advantages an classification of ICs. Digital IC characteristics, Digital IC families- DTL, HTL, ECI MOS, CMOS, TTL-Totem-pole, Open collector and Tristate outputs and IC packaging's.
	<u>UNIT – III</u>
	VHDL INTRODUCTION AND LANGUAGE FUNDAMENTALS:
	VHDL History – Design methodology: - Description Style, Direction Of Design Design Flow, Step In Digital System Design.
	Hardware modeling issue: Concurrency, Delays, Delta Time And Back Annotation Organization Of A VHDL Design File – Libraries.
	Language Fundamentals : Basic Sequential Statements – Date Types – Assignment Statements And Operators – Objects In VHDL : Signals, Variable, Constants, Files Attributes Of Objects – VHDL Package, Package Body And Configurations – Entite Declarations And Statements – Examples Of Simple Circuits.
	<u>UNIT – IV</u>
	COMBINATIONAL CIRCUIT BUILDING BLOCKS : Multiplexes, Decoders Encoders – Code converters and their implémentation using VHDL.
	$\underline{\mathbf{UNIT}} - \mathbf{V}$
	SEQUENTIAL LOGIC DESIGN : Latches and flip-flops, registers, counters (Asynchronous and synchronous) BCD, Ring and Johnson counter and their implementation using VHDL .

Text Books & Reference Books	 Learning Resources Text Books "Design of analog CMOS Integrated circuits" by Behzad Razhavi. Ronald J.Tocci, Neal S.Widmer, "Digital systems — Principles and applications". 8th edition, Pearson Education Asia, 2001. B.S. sonde, "Introduction to system design using ICs" Wiley Eastern. S.S. Limaye, 'VHDL – A design oriented Approach, 'TMH edition (2008). John Wakerley "Digital Design Principles". Reference Books Stephen Brown and zvonkovranesic, 'Fundamentals of digital design with VHDL", TMH edition (2007). APGodse&Bakshi, "Digital IC Application"-Technical Publications.
E-Resources & other digital material	1. <u>http://nptel.ac.in/courses/117106086/1</u>
	 2. <u>http://nptel.ac.in/courses/117106086/31</u> 3. <u>https://www.youtube.com/user/nptelhrd</u>

13CS3207-COMPUTER ORGANIZATION

Course Category	Program Core	credits	4
Course Type	Theory	Lecture-Tutorial- Practice	4-0-0
Prerequisites	Switching Theory & Logic Design, basics	Sessional Evaluation	40
	of Digital Design	Semester End Evaluation	60
		Total Marks	100

	1 T/	ale and the second in a Desister Transfer Misse Oreast' I to the	
Objectives			
	an	d Interrupts	
	2. It tells about Machine language, Assembly language and Micro Programmed		
	Control		
	3. It s	specifies about General Register, Stack Organization, Program Control, Pipeline	
	an	d vector Processing.	
	4. It j	provides detailed information about I/O devices and their Interface,	
	Da	ta transfer and its modes, Priority Interrupt and DMA.	
	5. It t	ells about types and Organization of memory; Multiprocessor characteristics	
	an	d Inter Processor communication	
		Upon Successful completion of course, student will be able to	
Course	Co1	Understand the architecture of modern computer	
outcomes		•	
	Co2	Analyze the performance of a computer using performance equation	
	Co3	Understand different instruction types	
	Co4	Calculate the effective address of an operand by addressing modes	
	Co5	Understand how cache mapping occurs in a computer and solve various problems	

	<u>UNIT I</u>
	REGISTER TRANSFER AND MICRO OPERATIONS : register transfer. Bus and Memory transfers, Arithmetic micro operations. Logic micro operations, Shift micro operations. Arithmetic logic shift units.
Course Content	BASIC COMPUTER ORGANIZATION AND DESIGN : Instruction codes, Computer Registers and Instructions, Timing and Control, Instruction cycles, Memory reference Instructions, Input-Output and interrupt.
	<u>UNIT II</u>
	PROGRAMMING THE BASIC CONTROL : Machine language, Assembly language, The Assembler, Programming Arithmetic and logic operations, Subroutines.
	MICRO PROGRAMMED CONTROLE: Control memory, Address sequencing, Micro program example, Design of control unit.
	<u>UNIT III</u>
	CENTRAL PROCESSING UNIT : General register organization, Stack organization, Instruction formats, Addressing modes, Program control, RISC, Parallel processing, Pipelining, Arithmetic pipe-line, Instruction pipe-line.
	<u>UNIT IV</u>
	INPUT – OUTPUT ORGANIZATION : Peripheral devices, Input-Output Interface, Asynchronous Data Transfer. Modes of transfer, Priority interrupt, DMA, Input – Output Processor, Serial Communication.
	<u>UNIT V</u>

	MEMORY ORGANIZATION : Memory hierarchy, Main memory, Auxiliary memory, Associative memory, Cache memory, Virtual memory, Characteristics of multi processors, Interprocessor arbitration, Inter processor communication and Synchronization and Cache coherence.
Text Books & Reference Books	 Learning Resources Text Books "Computer System Architechture" 3/e M.Moris Mano PHI-I. "Computer Organization" – V.C. Hemacher, Z.G.Vranesic and others Mc- Graw-Hill. Reference Books
	 "Computer architechutre and organization" –Hays& Briggs –PHI. "Computer Organization" Willium stallings PHI.
E-Resources & other digital material	1. <u>http://nptel.ac.in/courses/106105085/4</u> 2. <u>http://nptel.ac.in/courses/106108052/1</u>

13EC32P1 ANALOG AND DIGITAL COMMUNICATION LAB

Course Category	Program Core	Credits	2
Course Type	Practical	Lecture-Tutorial- Practice	0-0-3
	Electronic Devices and	Sessional Evaluation:	40
Prerequisite	Characteristics of Systems	Semester End Evaluation:	60
		Total Marks:	100

1. To understand basic modulation & demodulation schemes.
2. By using Pre-emphasis & De-emphasis the student understands how modulation signal can be improved.
 3. Prototypes filters are different types of LC-filters used in communication systems
4. Studies the transmission line characteristics and applying and practical utility.
Upon Successful Completion of Course, Student will be able to
CO1 Understand Function of Logic gates and can Implement Logic Circuits using gates.
CO2 Implement combinational logic circuits.
CO3 Elucidate differences between Synchronous and Asynchronous Circuits.
CO4 Demonstrate linear and non-linear wave Shopping.
CO5 Design Multivibrators.
LIST OF EXPERIMENTS 1. (a) Logic Circuits and Logic Gates. (b) Realization of Logic Gates using Nand and Nor Gates. 2. Full Adder and Full Subtractor. 3. Decoder 4. Divide by N-Ripple Counter. 5. Multiplexer

6. Divide by N-Synchronous Counter.7. RC Differentiator and RC Integrator
8. Diode Clippers and Clampers.
 9. Astable Multivibrator. 10. Schmitt Trigger.
Text Books:
1.Pulse and Digital Circuits by Taub and Schelling,Mc-Grahill Publications.
2.Switching Theory and Logic Design by Anand Kumar, PHI Publications

13EC32P2 IC APPLICATIONS LAB

Course Category		Credits	2
Course Type	Practical	Lecture-Tutorial- Practice	0-0-3
		Sessional Evaluation:	40
Prerequisite	Linear Integrated Circuits	Semester End Evaluation:	60
		Total Marks:	100

Course Objectives	2. 3. 4. 5. 6.	 Study the basic applications of op-Amp The student first studies the frequency response of op-Amp. So that student will have the ability to distinguish its wider band width. Comparative circuit is the fundamental block in electronic circuits to compare voltages. R-2R ladder network is used as a A/D converter in interfacing between Analog and digital. Op-Amp filter is one of the important block in Audio Amplifiers. 555 timer applications –in various timer circuits and Delay circuits. PLL IC is the heart of any communication system. 		
		It also gives exposure to various IC- function Generators.		
	Upon Successful Completion of Course, Student will be able to			
	CO1	It gives the basic idea of applying op-Amp in various applications for ex: Amp,filter,OSC etc.,		
	CO2	Basic understanding of up-Amp characteristics		
Course Outcomes	CO3	555 timers are used Extensively in delay circuits		
	CO4	PLL is one of the important block in Rf communication system so it gives an idea of it		
	CO5	It gives good knowledge of op-Amp in applying open-loop & closed loop configurations		
Course Content	LIST OF EXPERIMENTS			
	1.	Function Generator Using 8038 and 566 ICs.		
	2. Astable Multivibrator using Op-Amp & 555 Timers.			

	3. Comparator Using Op-Amp.			
	4. Ramp Generator Using Op-555 Timers.			
	5. Op-Amp Frequency Response.			
	6. Narrowband Pass Filter.			
	7. Full Wave Rectifier Using Op-Amp.			
	8. R-2R Ladder Network.			
	9. Window Detector.			
	10. Schmitt Trigger Using Op-Amp.			
TextBooks &	 D. Roy Choudary, Shail B.Jain, "Linear Integrated Circuits", New Age international Publishers, 2003. 			
References	2. Design of Analog Integrated Circuits by Sergio Franco.			

ELECTIVES-I			
1	NUERAL NETWORKS AND FUZZY LOGIC		
2	DATABASE MANAGEMENT SYSTEMS		
3	OPTO-ELECTRONICS		
4	TELEVISION ENGINEERING		

13EC32E1-NEURAL NETWORKS AND FUZZY LOGIC

Course Category	Program Core	credits	4
Course Type	Theory	Lecture-Tutorial-Practice	4-0-0
Prerequisites	Set Theory and Functions, Basics of	Sessional Evaluation	40
	Control Systems	Semester End Evaluation	60
		Total Marks	100

Course	1.	To acquire Knowledge about principles and techniques of Artificial Neural Networks
Objectives	2.	To become familiar with the fundamentals of Supervised Learning process.
	3.	To understand & analyze various Unsupervised Learning techniques.
	4.	To provide mathematical background and sufficient experience so that the student can
		read, write, and understand various problems involved in Fuzzy Logic And Fuzzy Sets
	5.	To cater the knowledge of Fuzzy Logic Control and use these for controlling real time
		systems
		Upon Successful completion of course, student will be able to
Course	Co1	Design the neural network to meet the needs of control systems and pattern
outcomes		classification issues
	Co2	Explain about the concept of fuzziness involved in various systems
	Co3	Gain adequate knowledge about fuzzy set theory and gain comprehensive knowledge of
		fuzzy logic control and adaptive fuzzy logic and to design the fuzzy control
	Co4	Get adequate knowledge of application of fuzzy logic control to real time systems
	Co5	Designing knowledge on the process of de-fuzzification using various methods

<u>UNIT –I</u>

ARTIFICIAL NEURAL NETWORKS: Introduction to Neural Networks-Biological neuronsartificial neurons-Mc Culloch-pitts model-neuron modeling for artificial neural systems-feed forward network-Feedback network-perception- Supervised and Unsupervised Learning. Learning rules Hebbian learning rule, perception learning rule, Delta learning, winner take all learning rule, Ouster learning rule.

Course Content

<u>UNIT –II</u>

SUPERVISED LEARNING: Preceptors-exclusive OR problem –single layer preceptor network-Multilayer feed forward networks: linearly non-separable pattern classification-delta learning rule for multi preceptor layer-Error back propagation algorithm-training errors-ADALINE-introduction to radial basis function network (RBFN).

<u>UNIT –III</u>

UNSUPERVISED LEARNING: Hamming net- Max net-Winner take all learning-counter propagation network-feature mapping-self organizing feature maps. Application of neural algorithms-elementary aspects of applications of character recognition- Neural network control applications- process identification: Basic non dynamic learning control architecture.

UNIT -IV

FUNDEMENTAL OF FUZZY LOGIC AND FUZZY SETS: Definition of Fuzzy set, a-level fuzzy set Cardinality-operation of Fuzzy sets- Union, intersection, complement-Cartesian product-Algebraic Sum-definition of Fuzzy relation-properties of fuzzy relations-fuzzy composition.

<u>UNIT –V</u>

DESIGN OF FUZZY SYSTEMS: Components of fuzzy systems- Functions of fuzzification-Rule base patterns-Inference mechanisms-method of de-fuzzification: Centre of Gravity method. Mean of maxima method, weighted average method, Height method. Design of fuzzy systems for temperature setting of storage water heater-fuzzy system for control of air conditioner.

Text Books & Reference Books	 Learning Resources Text Books 1. Jacek M Zurada, Introduction to Artificial Neural Systems, Jaico Publications. 2. H.J. Zimmermann, Fuzzy set theory and its applications Kluwer Academic publishers Reference Books 		
	 Timothy J. Ross, "Fuzzy logic with Engineering Applications" (Wiley) Nikola K.Kasabov, "Foundations of Neural Networks, Fuzzy Systems and Knowledge Egineering"(The MIT Press) 		
E-Resources & other digital material	1. <u>http://nptel.ac.in/courses/108104049/13</u> 2. <u>https://www.youtube.com/user/nptelhrd</u>		

13CS3208-DATABASE MANAGEMENT SYSTEMS

Course Category	Program Core	credits	4
Course Type	Theory	Lecture-Tutorial-Practice	4-0-0
Prerequisites	Basics of UNIX, data mining & set theory	Sessional Evaluation	40
		Semester End Evaluation	60
		Total Marks	100

Course	1. Describe DBMS architecture and models									
Objectives	2. Describes Database constraints, database languages									
Objectives	3. Specify normal forms with examples									
		ives the concept of a transaction and management, concurrency control techniques								
		atroduces file indexing and tree structure management								
	5. II	Upon Successful completion of course, student will be able to								
Course	Co1	Describe DBMS architecture and models								
outcomes										
	Co2	Describes Database constraints, database languages								
	Co3	Specify normal forms with examples								
	Co4	Gives the concept of a transaction and management, concurrency control techniques								
	Co5	Introduces file indexing and tree structure management								
	005	introduces me macking and tree structure management								
		<u>UNIT-I</u>								
	DAT	ABASE SYSTEM & APPLICATIONS: data base System VS file System – View of								
		– Data Abstraction – Instances and Schemas – data models – the ER Model – Relational								
		l = Other Models - Data base Languages - DDL - DML - data base access for								
		• •								
		cations programs – data base Users and Administrator – Transaction Management – data								
		systems structure – Storage Manager – the query processor – History of Data base								
	-	ms.Data base design and ER diagrams –Beyond ER Design Entitles, Attributes and Entity								
		Relationships and Relationship sets – Additional features of ER model – Concept Design								
Course Content	with t	he ER model – Conceptual Design for Large enterprises								
		<u>UNIT-II</u>								
	DET	ATIONAL MODEL Introduction to the Deletional Madel Integrity Constraint Oracle								
		ATIONAL MODEL: Introduction to the Relational Model – Integrity Constraint Over								
		ons – Enforcing integrity constraints – Querying relational data – Logical data base Design								
	- Intro	oduction to view – destroying / altering Tables and Views.								
	RELA	ATIONAL ALGEBRA AND CALCULUS: Relational Algebra – Selection and								

projection set operations – renaming joins – Division – Examples of Algebra overviews – Relational calculus – Tuple relational Calculus –Expressive power of algebra and calculus. Form of basic SQL Query – Examples of SQL Queries – Introduction to Nested Queries -Correlated Nested Queries set – Comparison Operators – Aggregative operators NULL values – Comparison using NULL values – Logical connectivity's – AND,OR and NOTR – Impact on SQL Constructs – Outer joins –Disallowing NULL values – Complex integrity Constraints in SQL 0 Triggers and Active Data bases

UNIT-III

SCHEMA REFINEMENT: Problems caused by redundancy – Decompositions – Problem related to decomposition – reasoning about FDS-FIRST, SECOND, THIRD Normal forms – BCNG – Lossless join Decompositions – Dependency preserving Decomposition – Schema refinement in data base design – Multi valued dependencies – Forth Normal form.Overview of Transaction Management: ACID Properties – Transactions and Schedules – Concurrent Execution of transaction – Lock Based concurrency control – Performance locking – Transaction support in SQL – Introduction to Crash recovery.

<u>UNIT-IV</u>

CONCURRENCY CONTROL: Serializability and recoverability – introduction to Lock Management – Lock Conversions – Dealing with Dead locks – Specialized Locking Techniques – Concurrency with outlocking.

CRASH RECOVERY: Introduction to ARIES – the Log – Other Recovery related structures – The Write Ahead Log protocol – Check pointing – recovering from a system Crash – Media recovery –Other approaches and interaction with Concurrency control.

UNIT-V

OVER VIEW OF STORAGE AND INDEXING: Data on External storage – File Organization and Indexing – Cluster Indexes, Primary and Secondary Indexes – Index data structures – Hash Based Indexing – Tree base Indexing – Comparison of file organizations – Indexes and performance Tuning.

STORAGE DATA: Disks and Files: The memory Hierarchy – Redundant Arrays of Independent – Disks –Disk Space Management – Buffer Manager – Files of records –Page formats – record formats.

 $\label{eq:construction} \mbox{Tree Structured Indexing- Intuitions for free Indexes - Indexed sequential Access Methods (ISAM)-B+$

TREES: A Dynamic Index Structure

HASH BASED INDEXING: Static Hashing – Extendable hashing – Linear Hashing – Extendable vs Linear Hashing

Text Books & Reference Books	 Learning Resources Text Books Database Management system, Raghurama Krishna, Johannes Gehrke, TATA McGraw Hill, 3nd edition. Database Systems Design, Implementation, and management, Rob & Coronel 5th Edition, Thomson. Reference Books Introduction to Database Systems, C.J.Data Pearson Education. Database Systems Design, Implementation, and management, Rob & Coronel 5th Edition, Thomson. Database Systems Design, Implementation, and management, Rob & Coronel 5th Edition, Thomson. Database Management System, Elmasri Navrate Pearson Education. Database Management System Mathew Leon, Leon Vikas.
E-Resources & other digital material	1 <u>http://nptel.ac.in/courses/106108052/1</u> 2. <u>http://nptel.ac.in/courses/106108052/42</u>

13EC32E2 OPTO - ELECTRONICS

Course Category	Program Core	credits	4
Course Type	Theory	Lecture-Tutorial-Practice	4-0-0
Prerequisites	Characteristics of light, basics of physics	Sessional Evaluation	40
		Semester End Evaluation	60
		Total Marks	100

Course Objectives	1.	Acquire knowledge about optical radiation, black body radiation, material							
		interactions							
	2.	Analyse radioactive processes, laser excitations, Gaussian characteristics of							
		laser beam							
	3.	Analyse specific lasers, Helium, Neon, Argon ion, carbon dioxide,							
		neodymium, semiconductor free electron							
	4.	Understand modulation of light, electro optic modulation, Acousto-optic							
	-	modulation, magneto optic devices							
	5.	Understand image binarization using photographic process							
		Upon Successful completion of course, student will be able to							
	0.1	And the base for the standard sector for the black base for the standard sector to the							
Course outcomes	Co1	Acquire knowledge about optical radiation, black body radiation, material							
		interactions							
	Co2	Analyse radioactive processes, laser excitations, Gaussian characteristics of laser							
		beam							
	Co3	Analyse specific lasers, Helium, Neon, Argon ion, carbon dioxide, neodymium,							
		semiconductor free electron							
	Co4	Understand modulation of light plastro ontic modulation. Acousto ontic							
	C04	Understand modulation of light, electro optic modulation, Acousto-optic							
		modulation, magneto optic devices							
	Co5	Understand image binarization using photographic process							

	<u>UNIT-I</u>								
	OPTICAL RADIATION: Radiometric and photortietric definitions. Blackbody radiation,								
	Material interactions, Temperature.								
	<u>UNIT-II</u>								
	LASERS: Radioactive Processes, Laser excitations, Gaussian characteristics of the laser								
Course Content	beam, optical feedback, Q-switching and mode locking. Specific Lasers – Helium – Neon								
	Laser, Argon ion Laser, Carbondioxiode Laser, Neodymium Laser, Semiconductor Laser,								
	Free electron Laser								
	<u>UNIT-III</u>								
	MODULATION OF LIGHT: Polarization, Light propagation in crystals, Electro-optic								
	modulation. Acousto-optic modulation. Magneto-optic devices. Image binarization using								
	photographic process								
	<u>UNIT-IV</u>								
	FOURIER OPTICS: Scalar theory of diffraction. Fourier transform properties of Lenses.								
	Optical information processing systems, special filtering using binary filters. Nonlinear								
	optical signal processing using contact screens, Apodization.								
	. <u>UNIT-V</u>								
	ELECTRO-OPTIC SYSTEMS: Holography, phase contrast microscopy. Pattern								
	recognition. Optical computing systems.								
	Learning Resources Text Books								
	1. Electro-Optical Devices and systems by M.A.Karim PWS-KENT publishing								
Text Books &	company								
Reference Books	2. Optical Electronics by A.K.Ghatak and K.Thygarajan, Cambridge University								
	press.								
	Reference Books								
	1. Optoelectronics-Emmanual Rosencher & Borge Vinter by Cambridge University								
	2. Laser Principals and Applications by J.Wilson, J.F.B.Hawkes, PHI Publications.								

E-Resources & other digital material	1. <u>http://nptel.ac.in/courses/117103063/26</u>
	2. <u>https://www.youtube.com/user/nptelhrd</u>

13EC41E3-TELEVISION ENGINEERING

Course Category	Program Core	credits	4
Course Type	Theory	Lecture-Tutorial-Practice	4-0-0
Prerequisites	Communication systems and various modulation	Sessional Evaluation	40
	techniques	Semester End Evaluation	60
		Total Marks	100

Course	1. Understand TV transmitter and Receiver								
Objectives	2. Analyze different types camera tubes								
	3. Understand different types of beam deflections	• •							
	4. Analyze picture tube characteristics, specifications and	-							
	5. Understand composite video signal, TV broadcasting	nd composite video signal, TV broadcasting channels and antennas							
	Upon Successful completion of course, student will be able to								
Course	Co1 Understand TV transmitter and Receiver								
outcomes	Analyze different types camera tubes								
	03 Understand different types of beam deflections								
	Analyze picture tube characteristics, specifications and colour p	picture tube							
	05 Understand composite video signal, TV broadcasting channels a	and antennas							
	UNIT-I								
	NTRODUCTION TO TV: TV Transmitter and receivers, synchroniz	ration.							
Course Content	Television Pictures: Geometric form and aspect ratio, image continuity, interlaced scanning, picture resolution. TV cameras: Camera tube, Videocon, Silicon Diode Arry Vidicon, camera optics, monochrome TV camera, color cameras. Picture tube: Monochromatic picture tube, Electrostatic focusing, Beam deflection, Picture Tubes: Monochromatic picture tube, Electrostatic focusing Beam deflection, picture tube characteristics and specifications, color picture tubes.								
	UNIT-II								

COMPOSITE VIDEO SIGNAL: Horizontal and vertical sync details, scanning sequence details, colour signal generation and Encoding: Perception of brightness and colours, additive colour mixing, video signals for colours, luminance signal, colour difference signals, encoding of colour difference signals, formation of chrominance signal, PAL encoder. TV signal transmission, VSB transmission, sound signal transmission, standard channel BW, TV transmitter TV signal propagation, interface, TV broadcast channels, TV transmitting Antennas.

TV STANDARDS: American 525 line B&W TV system, NTSC colour system, 625 – line monochrome system, PAL colour system, TV standards

UNIT-III

MONOCHROME TV RECEIVER: RF tuner, IF subsystem, video amplifier, sound section, syncseparation and processing, deflection circuits, scanning circuits.

PAL-D COLOUR RECEIVER: Electron tuners IF subsystem, Chroma decoder, separation of U & V colour phasors, synchronous demodulators, subcarrier generation, raster circuits.

TV RECEIVER TUNERS: Tuner operation, VHF and UHF tuners, digital tuning techniques, remote control of receiver functions.

UNIT-IV

IF SUBSYSTEM: AGC, noise cancellation, video and intercarrier sound signal detection, vision IF subsystem of Black and White receivers, colour receiver, IF subsystem. Receiver sound system: FM detection, FM sound detectors, typical applications. Colour signal system: PAL-D decoder, Chroma signal amplifiers, separation of U and V signals, Color burst separation, Burst phase discriminator, ACC amplifier, Reference oscillator, color killer circuit, RO phase shift and 180^o PAL – SWITCH circuitry, U&V demodulators, colour signal mixing.

UNIT-V

SYNC SEPARATION, AFC & DEFLECTION OSCILLATORS: Synchronous separation, noise in syncpulses, separation of frame and line sync pulses, AFC, single ended AFC circuit.

Deflection Oscillators, deflection drive IC's, Receiver Antennas.

Digital TV: Digital Satellite TV, Direct to Home Satellite TV, Digital TV Receiver, Digital Terrestrial TV.

	Learning Resources Text Books						
Text Books & Reference Books	 Modern Television practice – Principles, Technology and Servicing – by R.R.Gulati, New age International Publication – 2002. Monochrome and Colour TV – by R.R.Gulati, New Age International Publication 2002. Basic Telivision:Transmission& Reception &Colour Telivision Maini Anil.K Reference Books 						
	 TV engineering by A.M.Dhake, TMH Monochrome & color TV by R.R.Gulati, New Age International 						
E-Resources & other digital material	1. <u>http://nptel.ac.in/syllabus/117105029/</u> 2. <u>https://www.youtube.com/user/nptelhrd</u>						

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR:NELLORE) SPSR NELLORE DIST IV YEAR OF FOUR YEAR B.TECH DEGREE COURSE – I SEMISTER ELECTRONICS AND COMMUNICATIONS ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2016-2017) (For the batch admitted in the academic year 2013-2014)

	Course Code					Evaluation								
S.No		Course Title		Instruction Hours/Week		Credits	Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	End Semester Examination		Maximum Total Marks
		THEORY	L	т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	13EC4101	Digital Signal Processing**	3	1	-	4	2	40	2	40		3	60	100
2	13EC4102	Radar Engineering		-	-	4	2	40	2	40		3	60	100
3	13EC4103	VLSI Design	3	1	-	4	2	40	2	40	0.8*Best of mid+0.2*other	3	60	100
4	13SH4102	Management Science**	3	1	-	4	2	40	2	40	mid	3	60	100
5	13EC4104	Micro Controllers and Embedded systems	4	-	-	4	2	40	2	40		3	60	100
6		Elective – II		-	-	4	2	40	2	40		3	60	100
		PRACTICALS	S											
7	13EC41P1	MicroProcessor & Applications Lab	-	-	3	2		-	-	-	Day to Day	3	60	100
8	13EC41P2	MicroWave and Optical Communications Lab		-	3	2		-	-	-	Evaluation and a test	3	60	100
		TOTAL	21	3	06	28	-	-	-	-	(40 Marks)	-	480	800

** Common to ECE,EEE

13EC41101 DIGITAL SIGNAL PROCESSING

Course	Progra	am Core	Credits:	4	
Category					
Course Type	Theory		Lecture –tutorial Practice :	4	
Prerequisites	Signal & System, Fourier transform, Laplace Transform & Z transform		Continuous evaluation: Semester End evaluation: Total marks:	40 60 100	
Objectives	 Introduce students to the basic concepts and analytical methods of Z- transform. To provide mathematical background and sufficient experience so that the student can read, write and understand various DFT & FFT algorithms. Introduce techniques and tools for digital filter structures. To teach students how to design FIR filters. To understand various IIR filters. 				
Course		Upon Successf	ul completion of the course	student is able to :	
Outcomes	Co1	1. Explain the concept of Z-transform and its properties.			
	Co2	2. Describe the	ng		
	Co3	3. Apply the fa applications	thm in different		
	Co4	4. Design the I	IR filters and FIR filters for	given specification	
	Co5	-	IR filters from analog filter the discrete–time systems	• •	
			<u>UNIT – I</u>		
Course Content	Review of Discrete signals & systems: Z-transform and Inverse Z-transform, Theorems and Properties, system function, Sampling the Z-Transform, Fourier representation of finite duration sequences.				
	<u>UNIT – II</u>				
	Discrete & Fast Fourier Transform : DFT, properties of DFT, FFT, FFT, algorithms, Use of DFT for fast computation of convolution, IDFT – Correlation.				

	<u>UNIT – III</u>		
	Digital filter structures:- Basic FIR structures, IIR structures: Direct form- I, Direct form-II, Parallel form ,Cascade form Lattice Structure, Lattice- ladder structures, State space structures,		
	$\underline{\mathbf{UNIT}} - \mathbf{IV}$		
	Design of IIR filters: Properties of analog filters – Frequency domain filter models – Butter- worth, Chebyshev and other approximations – Filter design data – Low pass to high, Band pass and Band stop transformation – Filter response curves.		
	<u>UNIT – V</u>		
	Design of FIR filters - Fourier series method, Windowing, Sampling, Applications of Digital signal processing.		
TextBooks & References	 Digital Signal Processing A.V Oppenheim and R.W. Schafer, Prentice – Hall of India Digital Signal Processing, Salivahanam – TMH 		
	 3. Digital Signal Processing Computer Base Approach, S.K.Mitra – Tata Mc Graw-Hill (III) 		
	 References Digital Signal Processing, P.Ramesh Babu, Scitech Publications. Digital Signal Processing, John G Proakis and monolokis – Wiley Eastern Economy edition. 		
E-Resources & other Digital Materials			

<u>13EC4102 - RADAR ENGINEERING</u>

Course Category	Program Core	Credits:	4	
Course Type	Theory	Lecture –tutorial Practice :	4	
Prerequisites	Electromagnetic spectrum, Antenna Basics, and Propagation Mechanisms	Continuous evaluation: Semester End evaluation: Total marks:	40 60 100	
Objectives	 Understanding the principles of operation of pulsed radar systems. Derive the of radar range equation in terms of signal to noise ratio. Know about the components radar. To refresh principles of antennas and propagation as related to radars, also study of Parabolic reflector and phased array antennas. To apply Doppler principle to radars and hence detect moving targets, also to understand racking radars. Ability to work using detection of signals in radar clutters. 			
Course Outcomes	Upon Successful completion of the course student is able to			
	related to radar	-		
	Co 2 Ability to know about working of different components in a radar system			
	Co 3 Acquired knowledge about antenna parameters for parabolic and phased array antennas			
	Co 4 Gained knowledge about the working principal of CW and MTI Radars			
	Co 5 Foster ability to clutters	o work using detection of	signals in radar	
	<u>UNIT-I</u>			
Course Content	THE NATURE OF RADAR : The simple form of the Radar equation, Radar blocks diagram and operation, Radar frequencies Applications of Radar.			
	Minimum Detectable signal, Receiver noise, Probability Density			

	Functions, Signal to Noise Ratio, Integration of Radar pulses, Radar			
	Cross Section of Targets, Cross section fluctuations, Pulse Repetition Frequency and Range Ambiguities.			
	<u>UNIT-II</u>			
	 RADAR COMPONENTS : Klystron Power Amplifier, Travelling Wave Tube, Magnetron Oscillator, Cross Field Amplifier, Modulators Mixers: Conversion Loss, Noise Figure, Balanced mixer, Image recovery mixer, Duplexers: Branch type, Balanced type and Solid Stat Duplexers, limiters, Displays: CRT Display, A,B,C,D Scopes, PPI and RHI. 			
	<u>UNIT-III</u>			
	RADAR ANTENNAS : Antenna Parameters, Radiation Pattern and Aperture distribution. Parabolic Reflector Antenna, Phased arrays, Beam steering, Advantages and Limitations of Phased arrays, Phased array Architectures, Constrained Feed, Space Feed, Passive and Active Aperture Arrays, Digital Beam Forming.			
	<u>UNIT-IV</u>			
	RADAR SYSTEMS : Doppler Effect, Simple CW Radar, FM-CW Radar, MTI Radar: Delay line Cancellers, Blind speeds, Range Gated Doppler Filters, Limitations and types of MTI radars. Tracking Radar Sequential Lobbing, Conical Scanning and Monopulse Tracking, Tracking in Range.			
	<u>UNIT-V</u>			
	RADAR CLUTTER : Introduction to Radar Clutter, Surface Clutter and Radar equation, Sea Clutter, Land Clutter, Detection of Targets in Sea and Land Clutter and Angel Echoes			
TextBooks & References	 TextBooks : 1) Introduction to Radar Systems – Merrill.I.Skolnik, TMH, 2nd Edition, 2007 2) Radar : Principles, Technology and Applications, Byron Edde, Pearson Education, 2004 References : 1) Introduction to Radar Systems – Merrill.I.Skolnik, TMH, 2nd Edition, 2011. 2) MicroWave and Radar Engineering – M.Kulakarni, Umesh Publications, 			
E-Resources & other Digital Services	4 th Edition, 2012.			

13EC4103 - VLSI DESIGN

Course	Program Core	Credits:	4			
Category						
	771	T 4 4 1				
Course Type	Theory	Lecture –tutorial Practice :	4			
		Tractice .				
Prerequisites	Electronic Devices	Continuous evaluation:	40			
	& Circuits, Linear &	Semester End evaluation:	60			
	Digital Ic's	Total marks:	100			
	andBasics of Ic					
	Fabrication					
Objectives	1. To introduce the fur	damental structures of VLSI	Systems at the lowest levels of			
			direct application of VLSI devices			
			ysical and electrical properties of			
	MOS semiconductor ma	terials.				
	2 To understand the D	asia Circuit Concents and de	aion process of VI SI circuits and			
		-	sign process of VLSI circuits and circuit design and to examine the			
		large-scale digital integrated of	e			
	3. To know the Gate	level design and physical d	lesign by considering partioning,			
	floorplanning, Placement and Routing.					
	4. To bring both Circuits and System views on design together by considering circuit subsystems and VLSI Design styles .					
	subsystems and vest besign styles.					
	5. To have a profound understanding of the design of complex digital VLSI circuits,					
	computer aided simulation and synthesis tool for hardware design					
Course	Upon Successful completion of the course student is able to :					
Outcomes	Co 1 To be aware abo	out the trends in semiconducto	r technology, and how it impacts			
	scaling and perfe					
			tion steps, Static and Switching			
	characteristics of inverters					
	-	-	eristics for MOS transistors under			
	a variety of conditions					
	Co 4 To understand MOS transistor as a switch and its capacitance					
	Co 5 Able to design digital systems using MOS circuits. Synthesis of digital VLSI systems from register-transfer or higher level descriptions in hardware design					
	languages.	gister-transfer of higher level	uescriptions in naruware design			
	iunguugos.					

	<u>UNIT-I</u>
Course Content	INTRODUCTION: IC fabrication - MOS, PMOS, NMOS, CMOS &Bi-CMOS Technologies -Oxidation, Lithography, Diffusion, Ion implantation Metallization, Encapsulation, Probe testing, Integrated Resistors and capacitors.
	BASIC ELECTRICAL PROPERTIES OF MOS & BiCMOS CIRCUITS I_{ds} - V_{ds} relationships, MOSFET threshold voltage, g_m , g_{ds} , W_o ,Pass transistor NMOS Inverter, Various pull ups, CMOS Inverter analysis and design Bi- CMOS inverters.
	<u>UNIT-II</u>
	BASIC CIRCUIT CONCEPTS: Sheet Resistance R _s and its concepts to MOS Area Capacitance calculations, Inverter Delays, Driving large capacitive Loads Wiring Capacitances, Fan-In and Fan-Out.
	VLSI CIRCUIT DESIGN PROCESSES: VLSI Design Flow, MOS Layers Stick Diagrams, Design Rules and Layout, 2µm CMOS Design rules for wires Contacts and Transistors, Layout Diagram's for NMOS and CMOS Inverters and gates, Scaling of MOS circuits, Limitation of Scaling.
	<u>UNIT-III</u>
	GATE LEVEL DESIGN: Logic gates and other complex gates, switch logic Alternate gate circuits.
	PHYSICAL DESIGN: Floor- Planning, Placement, routing, Power delay estimation, Clock and Power routing
	<u>UNIT-IV</u>
	SUBSYSTEM DESIGN: Shifters, Adders, ALUs, Multipliers, Parity generators, Comparators, Counters, High density Memory Elements.
	VLSI DESIGN STYLES: Full-custom, Standard Cells, Gate-arrays, FPGAs and CPLDs and Design approach for Full Custom and Semi-Custom devices.
	<u>UNIT-V</u>
	VHDL Synthesis: VHDL Synthesis, Circuit Design Flow, Circuit Synthesis Simulation, Layout, Design capture tools, Design Verification Tools.
	TEST AND TESTABILITY: Fault-modeling and simulation, test generation design for testability, Built-in self-test.

TextBooks &	TEXT BOOKS:			
References	 Essentials of VLSI circuits and Systems – Kamran Eshraghian, Eshraghian Douglas and A Pucknell, PHI, 2005 Edition. D. Roy Chowdhury. Linear Integrated circuits, New Age International Edition(2003) ASIC Design Flow by Smith. 			
	REFERENCE BOOKS:			
	1. Pronciples of CMOS VLSI Design- Weste and Eshraghian, Pearson Education, 1999.			
	2. Modern VLSI Design-Wayne Wolf, Pearson Education, 3 rd Edition 1997.			
	3. Introduction to VLSI Circuits and Systems – John. P. Uyemura. John Wiley, 2003.			
	4. Digital Integrated Circuits – John M.Rabaey, PHI.			
E-Resources				
& other				
Digital				
Materials				

13SH4102- MANAGEMENT SCIENCE (Common to EEE and ECE)

Course Category:	Humanities	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practical:	4-0-0
Pre-requisite:	Economics and	Sessional Evaluation:	40
	accountancy	Univ.Exam Evaluation:	60
		Total Marks:	100

	—			
	1. To analyze the characteristics and contributions of enterprising people			
		develop an understanding of the general role of Small Business		
Course	Enterprises			
Objectives:		ve an introductory understanding of global entrepreneurship concepts		
		ntify the general characteristics of entrepreneurs; know the differences		
		ween entrepreneurial and managerial type jobs		
		derstand the role of entrepreneurship in economic development.		
	CO1	Understanding the concept of Management and its objectives		
	CO2			
Course	CO3			
Outcomes:		personal management.		
	CO4	Getting more functionality about personal management		
	CO5	Understanding about mass production and Batch production and		
		exploring on PERT and CPM		
		UNIT-I		
		pt of Management – Administration, organization – Functions of		
	Manag	gement, evolution of management thought – Organization, principles of		
	organi	zation – Types – Organization charts – Managerial objectives and social		
	respon	sibilities.		
		UNIT – II		
	Corpo	rate planning – Mission, Objectives, and programmes, SWOT analysis –		
	Strateg	y formulation and implementation – plant location and plant layout		
		ots- Production control.		
	UNIT –III Human resources management- Manpower planning – Personnel management –			
Course Content:	functions of personnel management, job evaluation and merit rating –			
	Incentive plans – Marketing, Functions of marketing.			
	UNIT-IV			
	Produc	ctivity – Batch and mass production – Work study- Basic procedure		
	involved in method study- work measurement –Elements of cost- r calculation of overhead charges – Depreciation.			
UNIT- V				
	Netwo	rk Analysis to project management - PERT/CPM- Application of		
		k techniques to engineering problems. – Cost Analysis- Project crashing.		
	Text F	Books:		
	1. Prin	ciples of management by Koontz and O.Donnel.		
Text Books &				
Reference Books:		strial organisation and management by T.R.Banga & S.C.Sharma		
		ence Books:		
	1. Ma	rketing by Philip Kotler		
		RT/CPM by L.S. Srinath.		
	3. Business policy by Gluek (TMH).			
L	1			

E-Resources:	http://nptel.ac.in/courses http://iete-elan.ac.in
	http://freevideolectures.com/university/iitm

<u>13 EC4104 - MICRO CONTROLLERS & EMBEDDED SYSTEMS</u></u>

Course Category	Progra	m Core	Credits:	4
Course Type	Theory		Lecture –tutorial Practice :	4
Prerequisites	Computer architecture and Basic programming.		Continuous evaluation: Semester End evaluation: Total marks:	40 60 100
Objectives Course Outcomes	 To understand the internal architecture details, pin configuration, th timing diagrams of 8051μc, and to know complete architecture programming, and interfacing details of 8051 microcontroller. To understand the internal architecture details, pipelining, addressis modes, and cpu registers of PIC μc. To study the classification, processors, hardware units and software urrof an embedded system. To understand the hardware and software requirements, Co-design issu of an Embedded System, and also to learn how embedded software development tools are developed. To understand the internal architecture of Kernel, Interrupt Serve Routine, Timers, and Memory Management of Real time Operation Systems. 			complete architectural, crocontroller. s, pipelining, addressing e units and software units ements, Co-design issues now embedded software Cernel, Interrupt Service
course outcomes	Co 1		valuation of different types	
	Co 2		programs in Assembly level language of the 8051 µc instruction set easily	
	Co 3	Gain the knowled Interrupt Structur	ge on internal architecture re and Timers).	of 8051µc (Register Set,
	Co 4Programming structure and able to write programslanguage of the 8051 & PIC Microcontrollers			••••
	Co 5	code. Design, test	e systems for embedded t and critically evaluate en using (embedded) comput	nbedded solutions to real
		1	<u>UNIT-I</u>	
Course Content	8051 MICROCONTROLLER: Architecture, pin description, Register Instruction set. Interrupt structure, timer and serial port operations, Mem and I/O interfacing Simple Assembly language programs. <u>UNIT-II</u>			port operations, Memory

	INTRODUCTION TO PIC MICROCONTROLLERS : Architecture and pipelining, program memory considerations, Addressing modes, CPU registers, Instruction set, simple operations. <u>UNIT-III</u> INTRODUCTION TO EMBEDDED SYSTEMS : classification, processors, hardware units, software embedded into systems, applications and products of embedded systems.			
	<u>UNIT-IV</u>			
	EMBEDDED SYSTEM DESIGN : Processor Selection, Hardware and Software Requirements, Hardware/Software Partitioning, co-design issues			
	Embedded Software Development Tools: Host and Target Machines, Linkers/Locators for embedded software.			
	<u>UNIT-V</u>			
	REAL TIME OPERATING SYSTEMS : Architecture of kernel, tasks and task scheduler, Interrupt Service Routine, Semaphores, Mutex, Mail boxes, Message queues, event registers, pipes, signals, timers, memory management, priority inversion problem			
TextBooks & References	 TextBooks : The 8051 Micro-Controllers, Kenneth J Ayala, 3rd Edition, Thomson Publications. Design with PIC Micro-Controllers by John B Peatman, Pearson Educations. Embedded Systems – Architecture, Programming and Design, Raj Kamal, 2nd Edition, TMH, 2008 Embedded Systems, by KVKK Prasad (Black Book). References : An Embedded Software Primer, Simon D E, Pearson Education, 1999 Specifications and Design of Embedded Systems, David D Gajski, 			
E-Resources & Other Digital Services	Frank Vahid, S.Narayan, J Garg.			

<u>13EC41P1 – MICROPROCESSORS & EMBEDDED SYSTEMS LAB</u>

Course Category:	C	omputing	Credits:	2	
Course Type:		actical	Lecture-Tutorial-Practical:	0-0-3	
Source Type.	Basic knowledge in		Sessional Evaluation:	40	
		ogramming C,	Univ.Exam Evaluation:	40 60	
Pre-requisite:		owledge In	Total Marks:	100	
i re-requisite.		croprocessors and	i otai iviai ks.	100	
		ogramming			
	pr				
	1 Evn	ose the features of the	e software tool – TASAM simulator.		
				6	
Course	 Demonstrate the arithmetic and data transfer instructions of 8086. To Write the assembly language programs for counters and code conversion 				
Objectives:			on of DOS interrupts.		
Objectives.			guage programs for simple logical and	lorithmotic	
	operat		iguage programs for simple logical and	anninette	
	-		ng knowledge with Microprocessor kit	F	
	CO1		ome appliances and toys using Microc		
		chips.	ome apphances and toys using MICIOC	onuonei	
	CO2		autora lika daaktona lantona usina	ious	
Course	CO2	U	puters like desktops , laptops using var	ious	
Outcomes:	CO2	processors	ich anal communication states	amial hura	
Outcomes:	CO3	-	igh speed communication ckts using s	erial dus	
		connection	1 CDL(x) = 1 contraction		
	004		ercial CPU(s) as realistic vehicles to d		
	CO4	- ·	troducing students to CPU instructions	s and internal	
		register structures			
	CO5 Able to understand the full internal workings of a typical simple CPU including the utilization of the various hardware resources during the execution of instructions.				
				during the	
		execution of instruc			
LIST OF EXPERIMENTS					
	1.		BLOCK TRANSFER OF DATA	. 1 1	
			te 8086 to add the given series of BCD	numbers and	
		show the result.			
			ute 8086 ALP to transfer a Block of da	ta from one	
	•	memory area to an			
	2.	MULTIPLICATIO			
a a i i			ecute 8086 ALP to perform the followi	ng	
Course Content:		multiplication			
			peated addition		
			ing SHIFT and ADD instruction		
			ecute 8086 ALP to perform the followi	ng.	
			1) Binary division		
	2) BCD division				
	 3. SEARCHING & SORTING DATA a) Write and execute 8086 ALP to find the minimum and maximumber from a given data array b) Write and execute 8086 ALP to arrange the given data array ascending order or descending order 				
				nd max1mum	
				•	
				ata array in	
	4. EVALUATION OF MATHEMATICAL EXPRESSION		N		
	Mathematical Expressions				
		a) $a*b-c/d + e$			
	n I I I I I I I I I I I I I I I I I I I				
	b) \sum xi yi				
	i=1				

	\sim White and a second 2006 Alm to a superstant the full second restriction.			
	c) Write and execute 8086 Alp to compute the following : Evaluation			
	of Multiplication of Series			
5.	CODE CONVERSION			
	a) Write and execute 8086 ALP to convert HEX to BCD number			
	b) Write and execute 8086 ALP to convert BCD to HEX number			
	c) Write and execute 8086 ALP to convert HEX to ASCII number			
	d) Write and execute 8086 ALP to convert ASCII to HEX number			
6.	LOGIC CONTROLLER MODULE			
	Write and execute 8086 ALP to design the logical expression using			
	Logic controller interface module			
7.	STEPPER MOTOR MODULE			
	Write and execute 8086 ALP to rotate a stepper motor either in clockwise			
	direction or in anticlockwise direction and to control the speed of			
	rotation			
8.	SERIAL INPUT DISPLAY UNIT MODULE(SIDU)			
	Write and execute 8086 ALP to display the desired word in a display of			
	serial input display unit interface module			
9.	PARALLEL INPUT DISPLAY UNIT MODULE (PIDU)			
	Write and execute 8086 Alp to design an up and down counter using			
	PIDU Interface module			
10.	DIGITAL TO ANALOG CONVERTER INTERFACE MODULE			
	Write and execute 8086 Alp to generate given waveform through CRO			
	using DAC			

13EC41P2 MICROWAVE AND OPTICAL COMMUNICATIONS LAB

Course Category		Credits	2
Course Type	Practical	Lecture-Tutorial- Practice	0-0-3
		Sessional Evaluation:	40
Prerequisite	MicroWave techniques	Semester End Evaluation:	60
		Total Marks:	100

Course Objectives	2.	To Study the reflex klystron which is used as amplifier and oscillator in radar stations and radio stations etc. Student understands well wave guide charcterstics so that he will know what frequency of operation guide can be use. By measuring antenna parameters student have an idea how wavelength and gain affects the directivity of an antenna and also		
	4. 5.	the same can be applied for studying other types of antennas. To measure unknown load impedance using VSWR method. To measure howmuch power is connected to load (using directional couplers) for ex : antenna		
	CO1	By studying reflex klystron characteristics student understands how it can be used as a amp,osc in microwave applications		
Comme Oritogram	CO2	By studying direction couplers student understands well how to calculate the power deliver to any load		
Course Outcomes	CO3	Student have an idea what frequency range wave guide can be operated		
	CO4	Using magic tee student knows well how power can be mixed and split phase reversal etc		
	CO5	Measuring antenna parameters gain , aperture area and wave length affects the directivity		
Course Content	LIST OF EXPERIMENTS			
	1. Reflex klystron charcteristics –I			
	2. Reflex klystron charcteristics –II			

	3. Direction couplers			
	4. Wave guide parameters			
	5. Characteristics of GUNN diode			
	6. Characteristics of MAGIC TEE			
	7. Antenna measurements			
	8. Measurement of VSWR			
	9. Measurement of impedance			
	10. Measurement of numerical aperture			
	1. Samuel Y Liao, "Microwave Devices and Circuits", Prentice Hall, 1999.			
TextBooks & References	2. M. Kulkarni, "Microwave and Radar Engineering", Umesh			
	 Publications,1998. 3. Annapurna Das and Sisir K Das, "Microwave Engineering", TMH, 2000 			

ELECTIVES-II				
1	BIO – MEDICAL INSTRUMENTATIONS			
2	COMPUTER NETWORKS			
3	DATA & COMPUTER COMMUNICATIONS			
4	OPERATING SYSTEMS			

<u>13EC41E1 – BIO-MEDICAL INSTRUMENTATIONS</u>

Course	Progra	am Core	Credits:	4		
Category	8					
cuttgory						
Course Type	Theor	у	Lecturetutorial	4		
			Practice :			
Prerequisites			Continuous evaluation:	40		
			Semester End evaluation:	60		
			Total marks:	100		
Objectives	1 Bi	omedical Signa	ls and Instrumentation	Sensors: Learn several		
Objectives		_		n body. Specific examples		
	-			• • •		
		-	-	signals. Understand how		
				other physiologic systems		
				erstand the theory of how		
		-		ors in laboratory sessions.		
	-	-	include thermistors and ele			
			•	and design on Wheatstone		
				tial and instrumentation		
	am	plifiers. Design	filters necessary to cond	ition and isolate a signal.		
	Understand how signals are digitized and stored in a computer or					
	presented on an output display.					
	3. Ins	strumentation	Application: Review the	cardiac, respiratory and		
	ne	ural physiologic:	al systems. Study the design	gns of several instruments		
	use	ed to acquire sig	gnals from living systems.	Examples of instruments		
		studied include ECG, blood pressure monitors, spirometers, EEG, MRI, and ultrasound. Integrate information learned about biomedical signals,				
	 4. Work in Multi-disciplinary Teams: Learn written and oral 					
		communication skills necessary to present information learned from laboratory sessions. Learn how to work in a group to attain a common				
		•	. Learn now to work in a	group to attain a common		
	go					
Course		Upon Successi	ful completion of the cour	se student is able to :		
Outcomes	Co 1	Demonstrate a	basic understanding of dise	ease medical conditions		
	001	or physiologica	Ũ	use, medical conditions		
		of physiologica	ii conditions.			
	Co 2	Understand the	functional components of	various instruments.		
	Co 3	Suggest a marrie	of mathoda which are was	d to diagnogo monitor ar		
	0.5		e of methods which are use	a to magnose, monitor or		
		manage conditi	OIIS.			

	Co 4 Demonstrate a critical appreciation of various biomedical			
	instruments.			
	Co 5 Explore new developments for better management or assessment of conditions.			
Course	<u>UNIT – I</u>			
Content	Electro – Physiology : Review of physiology and anatomy resting potential, action potential Propagation of action potential, bio electric potential, cardiovascular dynamics, electrode theory Bipolar and unipolar electrodes, surface electrodes, physiology transducers, system approach to biological system.			
	<u>UNIT – II</u>			
	Bio-electric potential and cardio vascular measurements : EMG – Evoked potential response, EEG – fetal monitor ECG – Phonocardiography, vactor cardiography B.P. – Blood flow – ardiac output, plethysmography, impedance cardiology, cardiac arrhythmias, pacemakers defibrillators			
	<u>UNIT – III</u>			
	Respiratory and pulmonary measurements and rehabilitation : Physiology of respiratory system rate measurements, oximeter, hearing aids, functional neuromuscular simulation, physiotherapy, diatheropy, nerve simulator. <u>UNIT – IV</u>			
	Patient Monitoring Systems: Intensive cardiac care unit, bedside and central monitoring systems Patient monitoring through bio-telemetry, implanted transmitters, Telemetering multiple information, sources of electrical hazards and safety techniques.			
	<u>UNIT – V</u>			
	Recent Trends: Medical imaging Laser applications, Ultrasound scanner Echo cardiograph, CT scan, MR/NMR. Cine angiograms, Colour Doppler systems, Holter monitoring. Endoscopy.			
TextBooks &	TEXT BOOKS:			
References	 Seslie Cromwell, Red J. Weibell and esich A. Plefitter – Bio medical Instrumentation and Measurements. R.S. Kandpur, Hand Book of Bio-medical Instrumentation, Tata Mc. Graw Hill, 1987. M.Arumugam, Bio –medical Instrumentation, Anuradha Agencies Publisher, Vidayal Karuppu – 612 606, Kumbakansm R.M.S., 1992. 			

	REFERENCE BOOKS:
	 L.A. Geddes and L.E. Baker – Principles of Applied Bio medical Instrumentation, John Wiley, 1989. Reichard Aston, Principles of Bio-medical Instrumentation and Measurements, Mervill Publishing Company, 1990.
E-Resources	
& other	
Digital	
Services	

<u>13EC41E2 - COMPUTER NETWORKS</u>

Course	Progra	m Core	Credits:	4		
Category	8					
Category						
Course Type	Theory	Į	Lecture tutorial	4		
			Practice :			
Prerequisites			Continuous evaluation:	40		
			Semester End evaluation:	60		
			Total marks:	100		
	1 55	1 0 11				
Objectives			with the fundamentals of	parallel and serial data		
		nsmission				
		-	arious Local Area Networl			
	3. To	acquire knowled	lge about principles and tee	chniques of different		
	net	work layer desig	n issues			
	4. To	understand the I	Data compression technique	es & Cryptography		
	5. To	become familiar	with the World wide web,	web browsers & web		
	ser	vers				
Course		Upon Successf	ul completion of the course	e student is able to :		
Outcomes	opon successful completion of the course student is usic to .					
Outcomes	Co 1 Understands the basics of communication, and different models of					
		data transmissi	ata transmission			
	Co 2	Studies differen	nt types of networks, and v	arious protocols for data		
		transmission				
				. 11		
	Co 3	Studies design issues of Link layers, and network layer.				
	Co 4	Understands error detection and correction schemes				
		Creates tables using automal media and trias to Design as 1				
	Co 5	Co 5 Creates tables using external media and tries to Design webpage				
Course	UNIT-I					
Content						
	INTRODUCTION : Theoretical basis for communication, Maximum data					
	rate of channel, communications media, Networks goals, Application of networks, protocol hierarchies, OSI reference model, Design issues for the layers in the model, Modulation and keying alternatives, multiplexing,					
	modems, parallel and serial data transmission, handshake procedures. Rs					
	232C,	232C, V.14/V.28, Rs449 interfaces, X.21, IEEE protocols, Link switching				
	techniques.					

	<u>UNIT-II</u>
	LOCAL AREA NETWORKS : Local communication alternatives, static and dynamic channel allocation in LANs, the ALOHA protocols, LAN protocols, IEEE logical link control, Ethernet, Token bus and Token ring protocols.
	DATA LINK LAYER : Design issues Error detection and correction, sliding window protocols. Wide area network standards, SDLC, HDLC, X 25 protocols.
	<u>UNIT-III</u>
	NETWORK LAYER : Design issues, Routing algorithms, congestion control algorithms, Internetworking, Transport layer design issues, connection management, Transport protocol X 25, session layer design issues, Remote procedure cell.
	<u>UNIT-IV</u>
	PRESENTATION LAYER : Abstract syntax notation, Data compression techniques, Cryptography Application such as file transfer, Electronic mail and virtual terminals, X 400 protocol for electrical messaging overview of ARPANET, MAP, TOP, Novell Netware, PC/NOS, Unix support for networking.
	<u>UNIT-V</u>
	APPLICATION LAYER : World wide web, web browsers, web servers, uniform resource locator, Home pages, Basics of HTML, creating links, Anatomy of URL and kinds of URLs, HTML assignments, Editors and converters, New features of HTML, creating tables, Using images, Using external media, writing and designing web pages, Introduction to CGI scripts.
TextBooks &	TEXT BOOKS:
References	1. Computer Networks – Andrew S Tanenbaum, 4th edition. Pearson Education/PHI
	2. Data Communications and Networking – Behrouz A.Forouzan, Third edition, TMH.
	REFERENCES:
	1. An Engineering Approach to Computer Networks – S.Keshav,2 nd

	edition, Pearson Education2. Understanding communications edition, W.A.Shay, Thomson	and	Networks,3 rd
E-Resources & other Digital Services			

13EC41E3-DATA AND COMPUTER COMMUNICATION

Course	Drogra	m Coro	Credits:	4			
Category	Flogra	m Core	Credits.	4			
Course Type	Theory	7	Lecture –tutorial Practice :	4			
Prerequisites	Basics	of communication	Continuous evaluation: Semester End evaluation: Total marks:	40 60 100			
Objectives	con 2. To pro 3. To 4. Kno diff	nmunication circui become familiar w tocols understand & anal owledge about the erent engineering	vith the fundamentals of da yze various digital multipl design of various multiple	ata communication lexing schemes			
Course			completion of the course	student is able to			
Outcomes	Co1	Understands basics of data communications and error control mechanisms					
	Co 2	Studies different	at types of networks and protocol hierarchy				
	Co 3	Understands diff	ferent digital multiplexing techniques				
	Co 4	Recognizes the importance of multiple access schemes					
	Co 5	Understands the	applications of Spread spe	ectrum techniques			
Course			<u>UNIT-I</u>				
Content	 DATA COMMUNICATION : Introduction – History of data communications – Data communication circuits – Data communication code – Error control- Synchronization – Data communications hardware – serial interfaces – Transmission media and data modem. <u>UNIT-II</u> DATA COMMUNICATION PROTOCOLS : Introduction – public data network – ISO protocol hierarchy – CCITT X.25 user to network interface 						
		OCOL – Local are tworks.	a networks – Metropolitan	area networks – wide			

	UNIT-III					
	DIGITAL MULTIPLEXING : Time-Division multiplexing – TI digital carrier system – CCITT Time-division Multiplexed carrier system – codecs – T- carriers – frame synchronization – Bit interleaving versus word interleaving. Frequency division multiplexing. AT & T's FDM hierarchy– Composite base band signal – L carriers – Hybrid data.					
	<u>UNIT-IV</u>					
	MULTIPLE ACCESS : TDMA – FDMA – CDMA – CSMA/CD – Multiple access information flow – Demand – assignment multiple access algorithms – ALOHA, polling techniques, slotted ALOHA.					
	<u>UNIT-V</u>					
	SPREAD – SPECTRUM TECHNIQUES : The beneficial attributes of spread – spectrum systems, model for spread – spectrum interference rejection – Pseudonoise sequences.					
	Direct – sequence spread – spectrum systems – example of direct sequencing – processing gain and performance.					
	Frequency hopping systems- frequency hopping example – fast hopping versus slow hopping.					
	Synchronization – Acquisition, tracking.					
TextBooks & References	 TEXT BOOKS: 1. Wayne Temasi, 'Advance Electronic Communications systems', Pearson Education(I,II and III). 2. Bernard Sklar, Digital communications – Fundamentals and Applications, 2ndEdition, Pearson Education (IV and V). 					
	REFERENCE BOOKS:					
	 Stallings – Data and Computer Communication, 6th Edition, Pearson Education. Taub&Shelling, Principles of Communication system, McGraw Hill. 					
E-Resources & Other Digital Services						

13EC41E4-OPERATING SYSTEMS

Course	Progra	m Core	Credits:	4			
Category	riogra						
Course Type	Theory	7	Lecture –tutorial Practice :	4			
Prerequisites		of computers and itechture	Continuous evaluation: Semester End evaluation: Total marks:	40 60 100			
Objectives	Ot 2. Ur 3. Re 4. Ar	ojectives of Operat aderstands Process acognizes the impo- nalyzes disk sched	control strategies ortance of memory manag	ement			
Course			l completion of the cour				
Outcomes	Co1	Studies the evolution of operating systems and understands the Objectives of Operating System					
	Co 2	Understands Pro	cess control strategies				
	Co 3	Recognizes the i	mportance of memory ma	nagement			
	Co 4	Analyzes disk sc	heduling process.				
	Co 5	Understands file	management, and securit	ty threats			
Course		I	UNIT-I				
Content	COM						
			I & OPERATING SYST system hardware- instructi				
		1	•				
	 function- Interrupts – Memory hierarchy- I/O Communication Techniques. Operating System Objectives and functions, Evaluation of operating systems- Example systems. 						
	<u>UNIT-II</u>						
	PROCESS DESCRIPTION : Process Control- Process states- Process Threads- Examples of process description and control.						
	CONCURRENCY : Principles of Concurrency- Mutual Exclusion – Software and hardware approaches- semaphores- Monitors- Message Passing- Readers Writers problem.						

	UNIT-III
	PRINCIPLES OF DEADLOCK : Deadlock prevention, detection and avoidance dining philosophers problem- Example Systems.
	MEMORY MANAGEMENT : Memory Management requirements- loading programs into main memory – virtual memory- hardware and Control structures- OS software- Examples of Memory Management.
	<u>UNIT-IV</u>
	UNI-PROCESSOR SCHEDULING : Types of Scheduling- Scheduling algorithms- I/O Management and Disc Scheduling- I/O devices- Organization- of I/O function- OS design issues- I/O buffering- Disk I/O – disk scheduling policies- examples System.
	<u>UNIT-V</u>
	FILE MANAGEMENT AND SECURITY : Overview of file management- file organization and access- File Directories- File sharing-Record blocking- secondary storage Management- Example system.
	Security: Security threats- Protection- Intruders- Viruses- trusted Systems
Text Books &	TEXT BOOKS:
References:	 Operating. System`- Internal and Design Principles, Fifth Edition- 2005, Pearson Education. / PHI
	 Operating System Principles- Abraham Silberchatz, Peter B.Galvin, Greg Gagne, 7th Edition John Wiley.
	REFERENCES:
	 Operating Systems A design approach- Crowley, TMH. Modern Operating Systems, Andrew S Tanenbaum, 2nd Edition, PHI/PEARSON.
E-resources and other Digital material	

NBKR INSTITUTE OF SCIENCE & TECHNOLOGY:: VIDYANAGAR (AUTONOMOUS) (AFFILIATED TO JNTU ANANTAPUR:NELLORE) SPSR NELLORE DIST IV YEAR OF FOUR YEAR B.TECH DEGREE COURSE – II SEMISTER ELECTRONICS AND COMMUNICATIONS ENGINEERING SCHEME OF INSTRUCTION AND EVALUATION

(With effect from the academic year 2016-2017) (For the batch admitted in the academic year 2013-2014)

				Instruction Hours/Week			Evaluation							
S.No	No Course Course Title Code					Credits	Sessional Test-I		Sessional Test-II		Total Sessional Marks (Max. 40)	End Semester Examination		Maximum Total Marks
		THEORY	L	Т	D/P		Duration In Hours	Max. Marks	Duration In Hours	Max. Marks		Duration In Hours	Max. Marks	100
1	13EC4201	Digital Image Processing	4	-	-	4	2	40	2	40	0.8*Best of two+0.2*least	3	60	100
2	13EC4202	Satellite Communication	3	1	-	4	2	40	2	40	of two	3	60	100
3		Elective - III		-	-	4	2	40	2	40		3	60	100
	PRACTICALS													
4	13EC42P1	Digital Signal Processing Lab	-	-	3	2		-	-	-	Day to Day Evaluation and a test (40 Marks)	3	60	100
5	13EC42PR	Project Work		-	3	6		-	-	-	Continuous Assesment and Seminar (80 Marks)	3	120	200
		TOTAL		01	06	20	-	-	-	-		-	360	600

13EC4201-DIGITAL IMAGE PROCESSING

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	4-0-0
	Engineering Mathematics(13SH1002, 13SH1002, 13SH1002, 13SH2101)	Continuous Evaluation:	40
Prerequisites:	Signals and Systems (13EC2101) Digital Signal Processing (13EC4101)	Semester end evaluation: Total Marks:	60 100

Objectives	1.	To learn the fundamentals of digital image processing and relationship between pixels.
	2.	
	3.	To understand the spatial and frequency domain image processing and fundamentals of color image processing.
	4.	To learn the restoration techniques used in image enhancement.
	5.	To learn how to code and compress the images.
Course		Upon successful completion of this course, the student will be able to
Outcomes		
	CO1	Describe how digital images are represented and how they are sampled and quantized
	001	and Define image processing system and basic relations among pixels.
	CO2	Analyze the need for image transforms, types and their properties.
		Study different techniques employed for the enhancement of images both in spatial and
	CO3	frequency domain and Describe techniques of color image processing.
	CO4	Explore causes for image degradation and various restoration techniques.
	CO5	Understand the techniques for image segmentation and Define different image coding techniques and compression models.

Course	<u>UNIT-I</u>					
Content	DIGITAL IMAGE FUNDAMENTALS : Digital Image Representation – Digital Image Processing System – Visual Perception – Sampling and quantization – Basic Relationship between pixels – Imaging geometry.					
	<u>UNIT – II</u>					
	IMAGE TRANSFORMS : Discrete Fourier Transform – Properties of 2-D Fourier transform – 2-D Fast Fourier Transform – Walsh Transform – Hadamard Transform – DCT – Haar Transform – Slant Transform – Hotelling Transform.					
	<u>UNIT – III</u>					
	IMAGE ENHANCEMENT : Back ground enhancement by point processing – Histogram Processing – Spatial Filtering – Enhancement in frequency Domain – Image Smoothing – Image Sharpening.					
	COLOUR IMAGES : Colour Image Processing – Pseudo colour image processing – Full colour image processing.					
	<u>UNIT – IV</u>					
	IMAGE RESTORATION : Degradation model – Algebraic approach to restoration – Inverse filtering – Least Mean Square filters – Constrained Least Mean Square restoration – Inverse Restoration.					
	IMAGE SEGMENTATION : Detection of Discontinuities – Edge Linking – Boundary detection and Boundary Description – Thresholding – Region Oriented Segmentation.					
	$\underline{\mathbf{UNIT}} - \mathbf{V}$					
	IMAGE CODING & COMPRESSION : Fidelity Criteria – Encoding Process – Transform Encoding – Redundancies and their removal methods – Image compression models and methods – Source coder and decoder – Error free compression – Lossy compression.					
Text Books	Text Books :					
& References:	 "Digital Image Processing" – Rafael C. Gonzalez, Richard E. Woods, 3rd Ed, Pearson. "Fundamentals of Image Processing" – A. K. Jain, Prentice Hall India. 					
	Reference Books :					
	1. "Digital Image Processing" – William K. Pratt, John Wiley Publications					
	2. "Digital Image Processing" – K. R. Castleman, Pearson Publications					
	3. "Fundamentals of Electronic Image Processing" – Weeks Jr, SRIC/IEEE series, PHI.					
E-resources & other Digital	 nptel.ac.in/courses/117105079/ www.ee.columbia.edu/~xlx/courses/ee4830-sp08/notes/lect1-parta.pdf 					

services		

13EC4202-SATELLITE COMMUNICATION

Course Category:	Programme Core	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	3-1-0
Proroquisitos	Antenna and Wave Propagation (13EC3104)	Continuous Evaluation: Semester end evaluation:	40 60
Prerequisites:	RADAR Engineering (13EC4102)	Total Marks:	100

Objectives	1.	Understand the origin, brief history, current state and future trends of Satellite Communications.
	2.	Understand the principles, concepts and operation of satellite communication systems.
		Able to calculate and interpret key geometric and timing parameters for a variety of common satellite orbits.
	4.	Able to apply suitable pulse code modulation schemes and coding for various applications.
	5.	Understand different types of satellite subsystems.
		Describe the concepts of signal propagation affects, link design, rain fading and link availability and perform interference calculations.
	7.	Design multiple-access satellite communications networks and understand the various trade-offs involved.
	8.	Understand the earth station architecture, hardware, testing and design considerations.
Course Outcomes		Upon successful completion of this course, the student will be able to
0	CO1	To identify, formulate and solve engineering problems related to orbital aspects of satellite communication.
	CO2	To know about working of different subsystems in the satellite.
	CO3	Design satellite link budgets to account for channel losses, noise, and interference in satellite communications systems for specific communications requirements.
	CO4	Gain knowledge about different multiple access techniques.
	CO5	Acquire knowledge about of Earth Station
Course		<u>UNIT-I</u>
Content	Comm	ODUCTION : The Origin of Satellite Communications, A brief history of Satellite nunications, Frequency allocations for Satellite Services, Applications, Current State of te Communications and Future trends of Satellite Communications.
	Angle	TAL ASPECTS OF SATELLITE COMMUNICATION : Orbital Mechanics, Lock determination, Orbital perturbations, Orbit determination, Launches and Launch les, Orbital effects in Communication Systems Performance.

	<u>UNIT-II</u>
	SATELLITE SUBSYSTEMS : Introduction, Attitude and Orbit Control System (AOCS), Telemetry, Tracking, Command and Monitoring (TTC&M), Power Systems, Communication Subsystems, Satellite Antennas, Equipment reliability and Space Qualification.
	<u>UNIT-III</u>
	SATELLITE LINK DESIGN : Basic Transmission Theory, System Noise Temperature and G/T ratio, Design of Down Link, Up Link design, Design of Satellite links for specified C/N, System Design examples.
	<u>UNIT-IV</u>
	MULTIPLE ACCESS : Frequency Division Multiple Access (FDMA), Time Division Multiple Access (TDMA), Frame Structure and Code Division Multiple Access (CDMA), Spread Spectrum Transmission and Reception.
	<u>UNIT-V</u>
	EARTH STATION : Types of Earth Station, Earth Station Architecture, Earth Station Design Considerations, Earth Station Testing, Earth Station Hardware and Satellite Tracking.
Text Books & References:	 Text Books : "Satellite Communication" - Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2nd Edition, 2003. "Satellite Communications" - Anil K.Maini and Varsha Agarwal, Wiley India Pvt Ltd, 2011. Reference Books : "Satellite Communication" - D.C Agarwal, Khanna Publications,5th edition "Satellite Communications" - Dennis Roddy, McGraw Hill, 4th Edition, 2009.
E-resources and other Digital material	 <u>http://ocw.mit.edu/courses/aeronautics-and-astronautics/16-851-satellite-engineering-fall-2003/lecture-notes/</u>

13EC42P1- DIGITAL SIGNAL PROCESSING LAB

Course Category:	Programme core	Credits:	2
Course Type:	Practical	Lecture-Tutorial-Practice:	0-0-3
	Engineering Mathematics ((13SH1002, 13SH1002, 13SH2101)	Continuous Evaluation:	40
Prerequisites:	Signals and Systems (13EC2101) Digital Signal Processing (13EC4101)	Semester end evaluation: Total Marks:	60 100

Objectives	To Understand the DSP using MATLAB programming	
Course		Upon successful completion of this course, the student will be able to
Outcomes	CO1	Calculate the output of any Linear Time Invariant system using Convolution for all test signals and generate various discrete time signals using MATLAB.
	CO2	Understand the concept of DFT and FFT and derive the spectrum of the various signals
	CO3	Calculate the output of any system using Z-Transform
	CO4	Design a digital filters using Butterworth and Chebyshev approximations
	CO5	Design a FIR digital filters
Course Content	LIST	OF EXPRIMENTS
content	1.	Generation of discrete time signals like sine, cosine, exponential, square and saw tooth
	2.	I I I I I I I I I I I I I I I I I I I
	3. 4.	
	4. 5.	
	6.	
	7.	
	8.	-
	9.	
	10.	Design a Butterworth digital low pass filter
	11.	Design FIR digital low pass filter
	12.	Design digital band pass filter
	13.	Design digital band stop filter
Text Books	Text I	Books:
&	1. 2.	

References:	 New Delhi, 1988. 3. Digital signal Processing Salivahanan-TMH 4. Digital signal Processing Computer based approach, S.K.Mitra – Tata Mc Graw – 5. Hill (III) (p-339-400).
	Reference Books:
	 "Digital Signal Processing" P.Ramesh Babu Scitech Publishers "Digital Signal Processing", John G Proakis and monolokis –Whiley eastern economy edition
E-resources and other Digital material	

ELECTIVES-III		
1	CONSUMER & ENTERTAINMENT ELECTRONICS	
2	IC FABRICATION TECHNOLOGY	
3	CELLULAR MOBILE COMMUNICATIONS	
4	DIGITAL CONTROL SYSTEMS	

<u>13EC42E1 CONSUMER AND ENTERTAINMENT ELECTRONICS</u> <u>ENGINEERING</u>

Course Category:	Programme Elective	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	4-0-0
	Electronic Devices & Circuits (13EC2102),		
	Pulse and Analog Circuits (13EC2204)	Continuous Evaluation:	40
Prerequisites:	Electronic Measurements & Instrumentation	Semester end evaluation:	60
	(13EC3101)	Total Marks:	100
	Microprocessor & Interfacing (13EC3201)		

Course Objectives		
Course		Upon successful completion of this course, the student will be able to
Outcomes		
	CO1	Design industrial product as per the customer needs and specifications
	CO2	Understand the operation of home entertainment devices with advances in technology
	CO3	Understand the usage of set top boxes, internet and networking in embedded devices.
	CO4	Understand the operation of handheld, wearable computers and mobile computing
	CO5	Understand the principle of human computer interface and test quality & reliability of a device.

Course	<u>UNIT I</u>	
Content	INTRODUCTION :Review of Electronics circuits, Microprocessor/microcontrollers and interfacing, Digital signal Processing, Embedded systems, PC interfacing Product Design fundamentals- Identifying Customer needs –Product specification – Product architecture-Industrial design-Managing projects.	
	<u>UNIT II</u>	
	HOME ENTERTAINMENT: Home Gateway, DTV, DVB, Home Theatre, Games systems, Advanced DVD and CD, HDTV and Flat panel, 3D TV Technologies, Set top Box, Internet TV, Home Networking in Embedded Devices.	
	<u>UNIT III</u>	
	MOBILE COMPUTING AND COMMUNICATION: Handheld and wearable computers, AV streaming to handheld devices, Smart Antennas.	
	<u>UNIT IV</u>	
	AUTOMOTIVE ENTERTAINMENT AND INFORMATION: Navigation, Driver assistance, sensors and control.	
	<u>UNIT V</u>	
	ENABLING TECHNOLOGIES: Power and batteries, Human computer Interface, compliance testing - EMC/RFI, Environmental, Special needs and assistive technologies, Standards, Quality, Reliability prediction and Engineering.	
Text Books	Text Books:	
& References:	1. Consumer Electronics for Engineers by Philip Hoff ,Cambridge University Press.	
	Reference Books:	
	 Product Design and development Karl T Ulrich Steven D Eppinger Tata- McGraw Hill ISBN. Hardware Bible by Winn Rosch Techmedia publications ISBN 81 87105 23 2 	
E-resources and other Digital material	www.icce.org	

13EC42E2-IC FABRICATION TECHNOLGY

Course Category:	Programme Elective	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	4-0-0
	Electronic Devices & Circuits (13EC2102),		
	Switching Theory & Logic Design (13EC2201),	Continuous Evaluation:	40
Prerequisites:	Analog IC Applications (13EC3103)	Semester end evaluation:	60
	Digital Design (13EC3204)	Total Marks:	100
	VLSI Design (13EC4103)		

Course	1. Explain the fundamental process involved in IC fabrication process and describe		
	the CMOS and BiCMOS IC Fabrication Process		
Objectives	2. Modelling of resistor and capacitor in IC fabrication considering the parasitic		
	effects and design rules		
	3. Design Gate structures, Network layout and sequential machines		
	4. Gain adequate knowledge on subsystems and physical design		
Course	5. Design for Testing and Testability		
Course	Upon successful completion of this course, the student will be able to		
Outcomes	and Explain the fundamental process involved in IC febrication process and describe		
	CO1 Explain the fundamental process involved in IC fabrication process and describe		
	the CMOS and BiCMOS IC Fabrication Process		
	CO2 Modelling of resistor and capacitor in IC fabrication considering the parasitic		
	effects and design rules		
	CO3 Design Gate structures, Network layout and sequential machines		
	Design Gate structures, Network layout and sequential machines		
	CO4 Gain adequate knowledge on subsystems and physical design		
	CO5 Design for Testing and Testability		
Course	<u>UNIT-I</u>		
Content	FUNDAMENTALS OF IC FABRICATION PROCESS : Preparation of EGS,		
	Crystal growing, Wafer preparation, Epitaxy, Oxidation, Photolithography, Diffusion,		
	Metallization, CMOS fabrication-p-well process, n-well process, twin-tub process.		
	BiCMOS fabrication. IC design techniques-Hierarchical design and design abstraction.		
	<u>UNIT-II</u>		
	DEVICES AND LAYOUT : Sheet resistance. Area capacitance. Delay unit τ. MOS		
	Transistors - Structure of the transistor, Simple transistor model, Transistor parasitics,		

	Wires and via s, Tub ties and latch up, Wire parasitics, Advanced characteristics. Design rules- Fabrication errors, Scalable design rules, SCMOS design rules, Layout design and tools- Layouts for circuits, Stick diagrams, Hierarchical stick diagrams.		
	<u>UNIT-III</u>		
	GATES, NETWORK, AND SEQUENTIAL MACHINES : Static complementary gates- Gate structures, Basic gate layouts, delay, Power consumption, Speed- power product, parasitics, Wires and delay. Network layout design- Single row layout, Standard cell layout. Network delay- Fan-out, Path delay, Transistor sizing. Sequential machines- Latches and Flip-flops.		
	UNIT-IV		
	SUBSYSTEMS AND FLOOR PLANNING : Subsystems- Pipelining, Data paths, 4- bit arithmetic processor as example of subsystem design. Floor planning methods – Block placement and channel distribution, Global routing, power distribution, Clock distribution. Off-chip connections- Packages, I/O Architecture, Pad design.		
	<u>UNIT-V</u>		
	TESTING AND TESTABILITY : System partitioning. Design for testability. Fault models. ATPG.		
	Testing combinational logic. Testing sequential logic. Scan design techniques. BIST.		
Text Books	Text Books:		
&	1. S.M.Sze, "VLSI Technology", Mc Graw-Hill Int. Edn.		
References:	2. Wayne Wolf, "Modern VLSI design" , Pearson Education Asia. Reference Books		
	Kelerence Books		
	1 Douglas A.Pucknell and Kamran Eshraghian, "Basic VLSI design", Prentice-		
	Hall of India Pvt. Ltd. 2 "Introduction to VLSI Circuits and Systems" – John. P. Uyemura. John		
	wiley, 2003.		
	3 "Digital Integrated Circuits" – John M.Rabaey, PHI,		
E-resources	www.iue.tuwien.ac.at/phd/ceric/node8.html		
and other	www.eecs.berkeley.edu/~hu/Chenming-Hu_ch3.pdf		
Digital material	www.nptel.ac.in/courses/113106062/Lec22.pdf		

13EC42E3-CELLULAR MOBILE COMMUNICATION

Course Category:	Programme Elective	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	4-0-0
	Engineering Mathematics ((13SH1002, 13SH1002, 13SH2101)	Continuous Evaluation:	40
Prerequisites:	Antenna and Wave Propagation (13EC3104) RADAR Engineering (13EC4102)	Semester end evaluation: Total Marks:	60 100

Objectives	1.	Understanding the basic Cellular system and elements of cellular radio system design.
	2.	Study of various Prediction models for cell coverage in terms of signal and traffic.
	3.	Understanding the interference problem and its reduction by designing proper antenna system.
	4.	Understanding frequency spectrum utilization techniques, channel and traffic management and evaluation of dropped call rate.
	5.	Understanding the need for digital mobile telephony and studying various mobile systems like GSM & CDMA.
Course		Upon successful completion of this course, the student will be able to
Outcomes	CO1	Understand cellular communication system and elements of cellular radio system design.
	CO2	Acquire knowledge about propagation mechanisms, Multipath fading, and channel modelling.
	CO3	Know about different types of co-channel interferences.
	CO4	Gain knowledge about Frequency management & Channel assignment.
	CO5	Acquire knowledge about the evolution of GSM, TDMA and CDMA technologies.

Course	UNIT-I		
Content	INTRODUCTION TO CELLULAR MOBILE SYSTEM : A basic cellular system, performance criteria, uniqueness of mobile radio environment, operation of cellular systems, planning a cellular system, Analog and Digital cellular systems.		
	ELEMENTS OF CELLULAR RADIO SYSTEM DESIGN : General description of the problem, concept of frequency reuse channels, channel interferences reduction factors, desired C/I from a normal case in an omni-directional antenna system, cell splitting, consideration of cellular system, cell-site antennas & mobile antennas characteristics, antennas at cell-site, mobile antennas.		
	<u>UNIT-II</u>		
	CELL COVERAGE FOR SIGNAL & TRAFFIC : General introduction, obtaining the mobile point-to-point model, propagation over water or flat open area, foiling loss, propagation in near distance, long distance propagation, point-to-point prediction model characteristics, cell-site antenna heights and signals coverage cells, mobile propagation.		
	<u>UNIT-III</u>		
	INTERFERENCE : Introduction to co-channel interference, real – time co-channel interference measurement, design of antenna system, diversity receiver, types of non-co-channel interference, interference between systems.		
	<u>UNIT-IV</u>		
	FREQUENCY MANAGEMENT & CHANNEL ASSIGNMENT : Frequency spectrum utilization, setup channels, management & traffic channel assignment, Handoff & their characteristics, dropped call rates and their evaluations. real-time co-channel interference measurement		
	<u>UNIT-V</u>		
	Digital cellular system: Why digital, digital mobile telephony, practical multiple access schemes, global system for mobile (GSM), TDMA & CDMA, miscellaneous mobile systems.		
Text Books	TEXT BOOKS:		
&	1. Lee. W. C. Y – "Mobile Cellular Telecommunication – Analog and Digital		
References:	Systems", Mc Graw Hill.2. G.K behere lopamudra das" Mobile communication" SciTech publications		
	RÉFERENCE BOOKS:		
	1. Principles of communication systems Taub & shilling TMH		

	2. Celullar mobile communications –Willium stallings –PHI
E-resources and other Digital material	www.iitg.ernet.in/scifac/qip/public_html/cd_cell/EC632.pdf www.morse.colorado.edu/~tlen5510/text/

13EC42E4-DIGITAL CONTROL SYSTEMS

Course Category:	Programme Elective	Credits:	4
Course Type:	Theory	Lecture-Tutorial-Practice:	4-0-0
	Engineering Mathematics ((13SH1002, 13SH1002, 13SH2101)	Continuous Evaluation:	40
Prerequisites:	Signals and Systems (13EC2101) Linear Control Systems (13EE3107)	Semester end evaluation: Total Marks:	60 100

Objectives	2.	Knowledge about principles and techniques of A/D and D/A conversions and basics of Z-Transform. Knowledge in stability analysis of digital control systems. Knowledge about the design of digital control systems for different engineering model.
Course		Upon successful completion of this course, the student will be able to
Outcomes	CO1	Use ordinary differential equations and Laplace transformation to model physical systems, (ii) obtain dynamic responses of linear systems and determine their stability, (iii) construct root-locus and bode plots, and apply nyquist criterion in the context of controller design, (iv) obtain and manipulate state-space representation of dynamical systems using linear algebra, and (v) become fluent in digital control systems design.
	CO2	Translate a set of performance specifications given in words to a formal description of a design problem, and then design a suitable feedback-controller using design tools, followed by simulation and verification using software tools.
	CO3	Know the techniques for relaxing the constraints or redesigning the controller for achieving closed-loop specifications either in the time-domain or in the frequency domain. They should also know how constraints in the time domain affect the frequency response of the system and vice versa and how to apply these concepts to design
	CO4	Debug their controller design
	CO5	Design digital controllers, assess their design through the constraint specifications, and decide whether their initial design is acceptable or can be improved

Course	<u>UNIT – I</u>
Content	Introduction: Examples of Data control systems – Digital to Analog conversion and Analog to Digital conversion, sample and hold operations. Introduction, Linear difference equations, pulse response, Z – transforms, Theorems of Z – Transforms, the inverse Z – transforms, Modified Z- Transforms.
	<u>UNIT-II</u>
	Signal Processing And Digital Control: Z-Transform method for solving difference equations; Pulse transforms function, block diagram analysis of sampled – data systems, mapping between s-plane and z-plane. State Space Representation of discrete time systems, Pulse Transfer Function Matrix solving discrete time state space equations, State transition matrix and its Properties, Methods for Computation of State Transition Matrix, Discretization of continuous time state – space equations
	<u>UNIT – III</u>
	State Variable Analysis: Concepts of Controllability and Observability, Tests for controllability and Observability. Duality between Controllability and Observability. Controllability and Observability conditions for Pulse Transfer Function. Mapping between the S-Plane and the Z-Plane – Primary strips and Complementary Strips – Constant frequency loci, Constant damping ratio loci, Stability Analysis of closed loop systems in the Z-Plane. Jury stability test – Stability Analysis by use of the Bilinear Transformation and Routh Stability criterion.
	<u>UNIT – IV</u>
	Design of Digital Controller: Transient and steady – State response Analysis – Design based on the frequency response method – Bilinear Transformation and Design procedure in the w-plane, Lead, Lag and Lead Lag compensators and digital PID controllers.
	<u>UNIT – V</u>
	Pole Placement Designa and State Observers: Design of state feedback controller through pole placement – Necessary and sufficient conditions, Ackerman's formula. State Observers–Full order and Reduced order observers.
Text Books &	TEXTBOOKS:
	1. Discrete-Time Control systems - K. Ogata, Pearson Education/PHI, 2nd Edition.

	<u>REFERENCES:</u>
	1. Digital Control and State Variable Methods by M.Gopal, TMH
E-resources	1. nptel.ac.in/syllabus/108103008/
and other	2. http://ocw.mit.edu/courses/mechanical-engineering/2-171-analysis-and-design-
Digital	of-digital-control-systems-fall-2006/
material	